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Abstract

These are just some basic notes on Bessel functions and theirapplication to finding the
eigenfunctions of the Laplacian.

1 Where Bessel Functions Arise

Consider the problem of finding the eigenvalues/vectors forthe Laplacian in 2 dimensions: We
wish to find a pair(u, λ) which solves

∆u = −λu, (1)

(since the eigenvalues of∆ will turn out to be non-positive, we express them as−λ whereλ
will be non-negative).

Let’s expressu = u(r, θ) as a function in polar coordinates and recall that in polar coordi-
nates the Laplacian can be expressed as

∆u =
1

r

∂

∂r

(

r
∂u

∂r

)

+
1

r2
∂2u

∂θ2

Now let’s guess1 a solution to (1) of the formu(r, θ) = R(r)T (θ). Plugging this into (1) we
see that in order for our guess to work, we need that

1

r
R′T +R′′T +

1

r2
RT ′′ = −λRT.

Rearranging terms, this becomes

rR′ + r2R′′

R
+ λr2 =

−T ′′

T

Aha, the term on the left is a function purely ofr while the term on the right is a function purely
of θ. Therefore, the only way we could get equality is if the left and right side are constant.
We denote this constant byα2 (i.e. we will take the constant to be positive2) and so have

rR′ + r2R′′

R
+ λr2 =

−T ′′

T
= α2

1This technique is known asseparation of variables
2I am not entirely sure why... presumably the case of a negative constant fails or is unpleasant somewhere down the

line.
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Now we solve each of these ODE, one forR and one forT . ForT we have

T ′′ + α2T = 0,

which has the general solution

T (θ) = d1 cos(αt) + d2 sin(αt).

ForR, we have the less trivial ODE

r2R′′ + rR′ +
(

λr2 − α2
)

R = 0. (2)

This ODE depends onλ (the eigenvalue we are looking for eigenfunctions for) andα (the
constant that we have free choice over) so we would expect to have to find the (two) solutions
to this ODE separately for each choice ofλ andα. But wait, we can make a clever change of

variables to “get rid ofλ”... we letx =
√
λ andR̃(x) = R

(

x√
λ

)

. ThenR̃ solves the ODE

x2R̃′′ + xR̃′ +
(

x2 − α2
)

R̃ = 0. (3)

The ODE (3) is calledBessel’s differential equation. It has been well studied and has two
solutions (for each choice ofα) which are denoted asJα(x) andYα(x). They are respectively
called theBessel function of the first kind and theBessel function of the second kind.
Now, recalling howR is related toR̃, we have that the two solutions to (2) areJα(

√
λr) and

Yα(
√
λr). Hence, the general solution to (2) is

c1Jα(
√
λr) + c2Yα(

√
λr).

So putting this all together we see that any solution of the form

u(r, θ) =
(

c1Jα(
√
λr) + c2Yα(

√
λr)

)

(d1 cos(αt) + d2 sin(αt)) (4)

solves (1). Of course, by linearity, any linear combination(with respect toα) of these also
solves (1).

2 Specific Domains

Remark 2.1. I am not an expert on this material by any means so I am mostly just play-
ing around trying to fit (4) to various domains. Better sources should be consulted for more
complete details.

Of course when we consider a particular domain (along with its boundary conditions), we
cannot just take any choice of the parameters in (4).

2.1 Domain isR2

For example, if we take all ofR2 as our domain, then we want thatθ = 0 andθ = 2π lead to
the same output value (i.e. we wantu(r, θ) to be well defined). For this, we need thatα be an
integer, i.e.α = n ∈ Z. We therefore have solutions of the form

u(r, θ) =
(

c1Jn(
√
λr) + c2Yn(

√
λr)

)

(d1 cos(nt) + d2 sin(nt)) , n ∈ Z, λ ∈ R
+
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2.2 Domain is the ballB(0, R) with Dirichlet boundary

In this case we also need thatu(R, θ) = 0. This boils down to considering the zeros of the
Bessel functionsJn andYn. At this point I will dispense with theYn for the rest of the paper
and consider only theJn3. We see that we needJn(

√
λR) = 0. This imposes a condition

onλ (which is reassuring as we don’t expect just any eigenvalue to be in the spectrum of the
Laplacian!), but for those pair ofn andλ,

u(r, θ) = c1Jn(
√
λr) cos(nt) + c2Jn(

√
λr) sin(nt)

is a solution.
Now what is the first non-trivial eigenvalue for this domain?This comes down to the

question, what is the smallest we can takeλ such thatJn(
√
λR) = 0 for some choice ofn?

Looking at the graphs of the Bessel functionsJn(x) (e.g. on the Wikipedia page) we see that
J0(x) has the smallest zero, so takingn = 0 and lettingλ be (the smallest choice) such that
J0(

√
λR) = 0, we have that thisλ is the first non-trivial eigenvalue, and its corresponding

eigenfunction is
u(r, θ) = J0(

√
λr)

which is in fact radial! (This makes intuitive sense... longtime heat flow in a ball with Dirichlet
boundary should look like a decaying mound of heat in the middle)

2.3 Domain is the ballB(0, R) with Neumann boundary

This is mostly the same as the previous subsection, only now we need to chooseλ as small
as possible such that there is ann with J ′

n(
√
λR) = 0. Looking at the graphs of the Bessel

functionsJn(x) we see thatJ ′
0(x) is actually zero forx = 0... so we can takeλ = 0 andn = 0

to get the corresponding eigenfunction

u(r, θ) ≡ 1

But this is just the trivial eigenvalue/eigenfunction. So lets find the next smallestλ. Looking at
the graphs of the Bessel functionsJn(x) we see that, indeed,J1(x) has the earliest peak among
them and so the first non-trivial eigenvalue corresponds to theλ > 0 such thatJ ′

1(
√
λR) = 0

and its corresponding eigenfunction is

u(r, θ) = c1J1(
√
λr) cos(t) + c2J1(

√
λr) sin(t)

which in particular is two dimensional.

2.4 Domain is the sectorS(γ,R) with Neumann boundary

Let S(γ,R) = {(r, θ)|0 ≤ r ≤ R, 0 ≤ θ ≤ γ} denote a sector of angleγ < 2π and radiusR.
Let’s try and fit (4) toS(γ,R) with Neumann boundary conditions.

First of all, since our angleγ is strictly less than2π, we need no longer worry aboutθ = 0
andθ = 2π syncing up to give the same output... so we no longer need thatα be an integer!
Instead we now need to pickα carefully so that the Neumann boundary condition is satisfied.

3TheYn are a bit nasty in that they shoot to−∞ as the input goes to0. Therefore we might ignore them if we only
wish to consider solutionsu(r, θ) which are defined at the origin.
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Considering the Neumann boundary condition along{θ = 0} we see that the sine term is
no good so we consider only solutions of the form

u(r, θ) = c1Jα(
√
λr) cos(αt)

Next, considering the Neumann boundary condition along{θ = γ}, we see that we need
α = nπ

γ
, n ∈ Z.

We have, as before, the trivial solutionλ = 0, u ≡ 1. To find the first non-trivial eigen-
value, we need to findλ > 0 as small as possible such that there exists ann such that
J ′

nπ

γ

(
√
λR) = 0. Since the peaks ofJα(x) move to the right asα increases, the earliest

peak we can find will be forn = 1. Then the correspondingλ will be the first non-trivial
eigenvalue and its corresponding eigenfunction will be

u(r, θ) = Jπ

γ
(
√
λr) cos(

π

γ
t).

But ACTUALLY, if γ is sufficiently small it could be that the first valley ofJ0(x) comes
before the first peak ofJπ

γ
(x). In this case, the first non-trivial eigenvalue would be theλ > 0

such thatJ ′
0(
√
λR) = 0 (i.e. theλ corresponding to the first valley ofJ0(x)) and its corre-

sponding eigenfunction would be

u(r, θ) = J0(
√
λr).

So for a sector of a very narrow angle, the first non-trivial eigenfunction is radial (and so has
its extrema in the corner and along the curved edge).
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