On the Tropical Geometry of Elliptic K3 Surfaces with General Singular Fibres

Date: 
Thursday, September 21, 2017 - 1:00pm
Speaker: 
Yu-Shen Lin

Tropical geometry helps to reduce the curve counting problems of toric manifolds to the combinatorics of 1-skeletons in the Euclidean space.We will first generalize the story to the case to elliptic K3 surfaces with only simple nodal singular fibres. With the help of Floer theory, we will discuss how to develop the tropical geometry assuming the presence of type $I_n, II, III, IV$ singular fibres in the list of Kodaira's classification.