Alexander Koldobsky

Alexander Koldobsky
Research Interests: 
205 Mathematical Sciences Building
Phone Number: 
Office Hours: 

MW 1-2 pm

  • 1982 Ph.D., St. Petersburg State University, Russia
Frequently Taught Courses: 
  • MATH 1500 Analytic Geometry and Calculus
  • MATH 1700 Calculus II
  • MATH 4700/7700 Advanced Calculus of One Real Variable
  • MATH 4900/7900 Advanced Multivariable Calculus
Research Interests: 

Convex geometry, harmonic and functional analysis, probability

Select Publications: 

B.Klartag, A.Koldobsky, An example related to the slicing inequality for general measures, J. Funct. Anal. 274 (2018), 2089-2112

A.Giannopoulos, A.Koldobsky, Volume difference inequalities, Trans. Amer. Math. Soc. 370 (2018), 4351--4372

A.Koldobsky, A.Merkurjev, V.Yaskin, On polynomially integrable convex bodies, Advances in Mathematics 320 (2017), 876--886

A.Koldobsky, Slicing inequalities for measures of convex bodies, Advances in Mathematics 283 (2015), 473-488.

A.Koldobsky, Fourier analysis in convex geometry, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 170 p.

A.Koldobsky, A \sqrt{n} estimate for measures of sections of convex bodies, Advances in Mathematics 254 (2014), 33-40.

A.Koldobsky, V.Yaskin, The interface between convex geometry and harmonic analysis, CBMS Regional Conference Series, American Mathematical Society, Providence, RI, 2008, 107 p.

A.Koldobsky, A functional analytic approach to intersection bodies, GAFA (Geometric and Functional Analysis) 10 (2000), 1507-1526.

R.J.Gardner, A.Koldobsky, Th.Schlumprecht, An analytic solution to the Busemann-Petty problem on sections of convex bodies, Annals of Mathematics 149 (1999), 691-703.

A.Koldobsky, The Schoenberg problem on positive definite functions, Algebra & Analysis 3 (1991), 78-85; translation in St Petersburg Math. J.  3 (1992), 563-570