Nodal count of graph eigenfunctions as an index of instability

Gregory Berkolaiko
Texas A&M University

Abstract. Zeros of vibrational modes have been fascinating physicists for several centuries. Mathematical study of zeros of eigenfunctions goes back at least to Sturm, who showed that, in dimension $d = 1$, the n-th eigenfunction has $n - 1$ zeros. Courant showed that in higher dimensions only half of this is true, namely zero curves of the n-th eigenfunction of the Laplace operator on a compact domain partition the domain into at most n parts (which are called "nodal domains").

It recently transpired (first on graphs with a subsequent generalization to manifolds) that the difference between this upper bound and the actual value can be interpreted as an index of instability of a certain energy functional with respect to suitably chosen perturbations. We will discuss two examples of this phenomenon: (1) stability of the nodal partitions with respect to a perturbation of the partition boundaries and (2) stability of an eigenvalue with respect to a perturbation by magnetic field. In both cases, the "nodal defect" of the eigenfunction coincides with the Morse index of the energy functional at the corresponding critical point.

Based on joint work with R. Band, P.Kuchment, H. Raz, U.Smilansky and T. Weyand.