Algebra Qualifying Examination

August 2020

You are allowed to rely on a previous part of a multi-part problem even if you do not prove the previous part. There are 100 points total.

Groups

1. Let G be a group. The center of G is $C(G)=\{g \in G \mid g x=x g$ for all $x \in G\}$.
a) (3 points) Show that $C(G)$ is a subgroup of G.
b) (3 points) Show that $C(G)$ is a normal subgroup of G.
c) (6 points) Show that if G is a finite group such that $G / C(G)$ is cyclic then G is abelian.
2. (13 points) How many distinct groups of order 35 are there up to isomorphism? Prove your answer.

Rings

3. (12 points) Let R be a commutative ring (with identity). Suppose that P_{1}, \ldots, P_{n} are prime ideals in R and let I be an ideal contained in $\cup_{i=1}^{n} P_{i}$. Show that $I \subset P_{i}$ for some i.
4. Suppose that F is a field.
a) (4 points) Suppose that F is finite. Show that there exists a nonzero polynomial $f(x) \in F[x]$ such that $f(a)=0$ for all $a \in F$.
b) (9 points) Suppose that F is infinite. Suppose that $f\left(x_{1}, \ldots, x_{n}\right) \in F\left[x_{1}, \ldots, x_{n}\right]$ is a nonzero polynomial in the indeterminates x_{1}, \ldots, x_{n}. Show that there exists $a_{1}, \ldots, a_{n} \in F$ such that $f\left(a_{1}, \ldots, a_{n}\right) \neq 0$.

> Modules and Linear Algebra
5. (12 points) Suppose that R is a commutative ring (with identity) and

$$
0 \rightarrow M^{\prime} \xrightarrow{\alpha} M \xrightarrow{\beta} M^{\prime \prime} \rightarrow 0
$$

is a short exact sequence of R-modules and M^{\prime} and $M^{\prime \prime}$ are finitely generated R-modules. Show that M is a finitely generated R-module.
6. (13 points) Let F be a field and A be a nonzero $l \times m$ matrix with coefficients in F. Suppose that $1 \leq n \leq \max \{l, m\}$. An $n \times n$ submatrix of A is a matrix obtained by removing $l-n$ rows and $m-n$ columns from A. The rank of A is the
common dimension of the row space and column space of A. Show that $\operatorname{rank}(A)=\max \{n \mid \operatorname{Det}(B) \neq 0$ for some $n \times n$ submatrix B of $A\}$.

As an example, in the matrix

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)
$$

the matrix

$$
\left(\begin{array}{ll}
1 & 3 \\
4 & 6
\end{array}\right)
$$

is a 2×2 submatrix and (5) is a 1×1 submatrix.

Fields

7. (12 points) Suppose that F is a field of characteristic zero and K is a finite field extension of F. Show that there are only finitely many intermediate fields L between F and K.
8. Let K be a splitting field of $f(x)=x^{4}-2 x^{2}+9$ over \mathbb{Q}. You may assume the fact that $f(x)$ is irreducible in $\mathbb{Q}[x]$ (you do not need to prove that $f(x)$ is irreducible).
a) (3 points) Compute the index $[K: \mathbb{Q}]$.
b) (2 points) Compute the order of the Galois group $\operatorname{Gal}(K / \mathbb{Q})$.
c) (8 points) Compute the group $\operatorname{Gal}(K / \mathbb{Q})$. If it is isomorphic to a well known group, identify the group.
