Algebra Qualifying Examination

January 2021

You are allowed to rely on a previous part of a multi-part problem even if you do not prove the previous part. There are 100 points total.

Groups

- 1. (12 points) Let S_n be the symmetric group of permutations on n letters. Let σ be an odd permutation in S_n , and G be a subgroup of S_n such that $\sigma \in G$. Prove that the order of G is even, and that exactly half of the elements in G are odd.
- **2.** Suppose that H and K are subgroups of a finite group G.
 - a) (7 points) Show that $[H: H \cap K] \leq [G: K]$.
 - b) (6 points) Show that $[H:H\cap K]=[G:K]$ if and only if G=KH.

Rings

- **3.** (13 points) Let $\alpha \in \mathbb{C}$ be a root of a monic polynomial $f(x) \in \mathbb{Z}[x]$. Prove that the minimal polynomial p(x) of α over \mathbb{Q} lies in $\mathbb{Z}[x]$.
- **4.** (12 points) Let A be a commutative ring (with identity). Suppose that for every $x \in A$, there exists n > 1 (which depends on x) such that $x^n = x$. Show that every prime ideal of A is maximal.

Modules

5. (12 points) Let X be a subspace of $M_n(\mathbb{C})$, the \mathbb{C} -vector space of all $n \times n$ complex matrices. Assume that every nonzero matrix in X is invertible. Prove that $\dim_{\mathbb{C}}(X) \leq 1$.

- **6.** Let V be a vector space over a field K, and let $(,): V \times V \to K$ be a bilinear form on V. A subspace A of a vector space B is proper if A is not the zero vector space and A is not equal to B.
 - a) (6 points) Suppose that V is finite dimensional and W is a proper subspace of V. Show that there exists a nonzero vector $v \in V$ such that (w, v) = 0 for all $w \in W$.
 - b) (7 points) Suppose that V is infinite dimensional, and \mathcal{B} is a basis of V. Let (,) be the unique bilinear form on V such that for all $a, b \in \mathcal{B}$, we have that (a, b) = 0 if $a \neq b$ and (a, b) = 1 if a = b. (You do not need to prove that this is a bilinear form.) If W is the subspace of V spanned by all vectors of the form a - b with $a, b \in \mathcal{B}$, show that W is a proper subspace of V and that there is no nonzero vector $v \in V$ with (w, v) = 0 for all $w \in W$.

Fields

- 7. (13 points) Let f(x) be irreducible in the polynomial ring F[x], where F is a field of characteristic p > 0. Show that f(x) can be written as $g(x^{p^e})$ where g(x) is irreducible and separable. Use this to show that every root of f(x) has the same multiplicity p^e in a splitting field.
- **8.** (12 points) Construct a splitting field of x^5-2 over $\mathbb Q$. Find its dimension over $\mathbb Q$.