Analysis Qualifying Exam, August 2020

Instructions: Do all 8 problems. Use a separate sheet for each problem. Your work will be graded for correctness, completeness, and clarity.

1a. Let X be a set and let \mathcal{A} be an algebra of subsets of X. Define the notion of a premeasure μ_{0} and its induced outer measure μ_{0}^{*}. Define what it means for a subset of X to be μ_{0}^{*}-measurable.
b. Let $X=\mathbb{R}$. Give the definition of an algebra and an associated premeasure used in the construction of the Lebesgue measure m.
c. By assuming that the induced outer measure m^{*} from part (b) satisfies

$$
m^{*}(A)=\inf \left\{\sum_{i=1}^{\infty}\left(b_{i}-a_{i}\right): A \subseteq \bigcup_{i=1}^{\infty}\left(a_{i}, b_{i}\right), a_{i}<b_{i}, a_{i}, b_{i} \in \mathbb{R}\right\} \quad(A \subseteq \mathbb{R})
$$

show that for any set $A \subseteq \mathbb{R}$, there is a G_{δ} set $G \supseteq A$ with $m(G)=m^{*}(A)$.
2. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of Lebesgue measurable functions on $[0,1]$ such that $\int_{0}^{1}\left|f_{n}\right|^{2} d m \leq 1$ for all n. Assume that there exists a Lebesgue measurable function f such that

$$
\int_{0}^{1}\left|f_{n}-f\right| d m \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

a. Show that $\int_{0}^{1}|f|^{2} d m \leq 1$.
b. Does it follow that

$$
\int_{0}^{1}\left|f_{n}-f\right|^{2} d m \rightarrow 0 \quad \text { as } n \rightarrow \infty ?
$$

3a. Let $M>0$ and suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is M-Lipschitz, i.e., $|f(x)-f(y)| \leq M|x-y|$ for all $x, y \in \mathbb{R}$. Show that if A is Lebesgue measurable, then $f(A)$ is Lebesgue measurable.
b. Let $f(x)=x^{2}-2^{x}$. Show that if N is a Lebesgue null set, then so is $f(N)$.
4. Let f be a Borel measurable function on $[0, \infty)$ and define

$$
F(s)=\int_{0}^{\infty} \frac{f(x)}{(1+s x)^{2}} d m(x) \quad(s>0)
$$

a. Show that if the function $x \mapsto \frac{f(x)}{x}$ is integrable on $[0, \infty)$, then F is finite a.e. and that F is integrable over $[0, \infty)$.
b. Show that if f is non-negative and F is bounded, then f must be integrable.
c. Assume that f is continuous and that the limit $a:=\lim _{x \rightarrow \infty} f(x)$ exists and is finite. Find $\lim _{s \rightarrow 0} s F(s)$ and justify your answer.
5. Let X and Y be Banach spaces and let $T: X \rightarrow Y$ be an injective, bounded linear operator. Denote the range of T by $R(T)$. Show that the following are equivalent:
a. The inverse of T on $R(T)$ is continuous.
b. There exists a positive constant C such that $\|T x\| \geq C\|x\|$ for all $x \in X$.
c. $R(T)$ is a closed subset of Y.

6a. State the Closed Graph Theorem.
b. Let H be a Hilbert space and let $T: H \rightarrow H$ be a linear map (not assumed to be bounded). Suppose that $\langle T x, y\rangle=\langle x, T y\rangle$ for all $x, y \in H$. Show that T must be bounded.
7. Let X be a normed space and let X^{*} be its dual space; denote $\left(X^{*}\right)^{*}$ by $X^{* *}$.
a. Show that the map $X \ni x \mapsto \widehat{x}: X \rightarrow X^{* *}$ defined by

$$
\widehat{x}(f)=f(x) \quad\left(x \in X, f \in X^{*}\right)
$$

is a linear isometry.
b. Let $1 \leq p \leq 2$ and let

$$
X=\ell^{p}(\mathbb{N})=\left\{\left(x_{n}\right)_{n=1}^{\infty}: x_{n} \in \mathbb{R}, n \in \mathbb{N}, \sum_{n=1}^{\infty}\left|x_{n}\right|^{p}<\infty\right\}
$$

For which values of p is the following statement true: for any $f \in X^{*}$, there exists $x \in X$ with $\|x\|=1$ such that $\|f\|=|f(x)|$? Justify your answer.
8. Let f be a non-negative Borel measurable function on $[0,1]$. For $1 \leq p \leq \infty$, let L^{p} denote $L^{p}\left([0,1], \mathcal{B}_{[0,1]}, m\right)$ equipped with the p-norm $\|\cdot\|_{p}$.
a. Show that if $f \in L^{\infty}$, then for each $\varepsilon>0$ there exists $k \leq\left\lceil\frac{\|f\|_{\infty}}{\varepsilon}\right\rceil$ pairwise disjoint measurable sets A_{1}, \ldots, A_{k} such that the function $\phi:=\sum_{j=1}^{k} a_{j} \chi_{A_{j}}$, with $a_{j}:=\frac{1}{m\left(A_{j}\right)} \int_{A_{j}} f d m$, satisfies $\|f-\phi\|_{1}<\varepsilon$.
b. Show that if $f \in L^{2}$, then for each $t>0$,

$$
\int_{\{f>t\}} f d m \leq \frac{\|f\|_{2}^{2}}{t}
$$

c. Show that the conclusion in part (a) holds if f belongs to L^{2} (instead of L^{∞}) but with $k \leq\left\lceil\frac{4\|f\|_{2}^{2}}{\varepsilon^{2}}\right\rceil$.

