Analysis Qualifying Exam, January 2021

Instructions: Do all 8 problems. Use a separate sheet for each problem. Your work will be graded for correctness, completeness, and clarity.

- 1. Let \mathcal{A} be an algebra and let μ be a finite measure on $\sigma(\mathcal{A})$. Let \mathcal{F} be the collection of sets F in $\sigma(\mathcal{A})$ such that for each $\varepsilon > 0$, there exists $A \in \mathcal{A}$ satisfying $\mu(F\Delta A) < \varepsilon$, where $F\Delta A = (F \setminus A) \cup (A \setminus F)$. Show that \mathcal{F} is a σ -algebra.
- 2. Let (X, \mathcal{M}, μ) be a measure space. Suppose that f is an integrable function. Show that for every $\varepsilon > 0$, there exists $E \in \mathcal{M}$ such that $\mu(E) < \infty$ and

$$\left|\int f d\mu - \int_E f d\mu\right| < \varepsilon.$$

3. Evaluate the limit

$$\lim_{n \to \infty} \int_{\mathbb{R}} \frac{e^{x/2}}{1 + e^{nx}} dx$$

4. Let f be an integrable function on [0,1]. For $y \in \mathbb{R}$, let

$$g(y) = \int_0^1 \frac{f(x)}{\sqrt{|y-x|}} dx$$

- a. Show that g is integrable on [0, 1].
- b. Is g(y) finite for almost every $y \in \mathbb{R}$?
- 5. Let (X, \mathcal{M}, μ) be a measure space and let $\{f_n\}_{n=1}^{\infty}$ be a Cauchy sequence in $L^1(X, \mathcal{M}, \mu)$. Prove that for each $\varepsilon > 0$, there exists $\delta > 0$ such that if $\mu(E) < \delta$, then

$$\sup_n \int_E |f_n| d\mu < \varepsilon$$

6a. Show that if $f:[0,1] \to \mathbb{R}$ is absolutely continuous, then it is of bounded variation on [0,1].

b. For $a \ge 0$, define $g_a : [0, 1] \to \mathbb{R}$ by

$$g_a(x) = \begin{cases} x^a \cos(1/x) & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

For which values of a is g_a absolutely continuous?

- 7. Let X and Y be normed spaces and let $T: X \to Y$ be a bounded linear operator.
 - a. Give the definition of the adjoint T^* of T and show that it is bounded with $||T^*|| = ||T||$.
 - b. Show that if T^* is injective, then the range of T is dense in Y.
- 8. Let (X, \mathcal{M}, μ) be a measure space, $\{f_n\} \subseteq L^p(\mu)$, where $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$. Suppose that for each $g \in L^q(\mu)$, $\int f_n g d\mu \to 0$ as $n \to \infty$. Show that $\sup_n ||f_n||_p < \infty$.