AUGUST 2019 ANALYSIS QUALIFYING EXAM

Instructions: Do all 8 problems. Use a separate sheet for each problem.

1. Let

$$
f(x, y)=\left\{\begin{array}{lll}
x^{-4} & \text { if } & y \leq x^{2}, x \neq 0 \\
-y^{-2} & \text { if } & y>x^{2} \\
0 & \text { if } & x=0
\end{array}\right.
$$

Apply Tonelli's Theorem to prove that f is not integrable on $A=$ $[0, \infty)^{2}$, but it is integrable on $B=[0, \infty) \times[1, \infty)$. Apply Fubini's Theorem to compute the integral

$$
\iint_{B} f(x, y) d x d y
$$

2. State the dominated convergence theorem. Let

$$
f_{n}(x)=\frac{\sin \left(n x^{1 / 3}\right)}{x\left(n+x^{1 / 3}\right)}, \quad x>0
$$

Show that $f_{n} \in L^{1}([0, \infty))$ and that

$$
\lim _{n \rightarrow+\infty} \int_{0}^{\infty} f_{n}(x) d x=0
$$

3. Let A be a measurable subset of $[0,1]$ of positive measure. Show that there exist $x_{1}, x_{2} \in A$ with $x_{1} \neq x_{2}$ such that $x_{1}-x_{2}$ is a rational number.
4. Let f be a measurable function on a measure space (X, μ).
(a) Prove that if f is integrable then the series

$$
\sum_{n=1}^{\infty} \mu\left(\left\{x \in X:|f(x)|>n^{2}\right\}\right)
$$

converges. Provide an example to show that the converse implication is false.
(b) Show that if $\mu(X)<\infty$ and

$$
\sum_{n=1}^{\infty} n^{2} \mu\left(\left\{x \in X:|f(x)|>n^{2}\right\}\right)
$$

converges, then f must be integrable over X.
5. Let T be a linear operator from a Hilbert space V (over \mathbb{C}) to V that satisfies

$$
\|f\|=\frac{1}{5}\|T(f)\|
$$

for all $f \in V$. Prove that for all $f, g \in V$ we have

$$
\langle T(f), T(g)\rangle=25\langle f, g\rangle
$$

6. Consider the space $\mathcal{C}[-1,1]$ of continuous functions on $[-1,1]$, equipped with the L^{1} norm with respect to the Lebesgue measure, and the linear functional $T_{0}: \mathcal{C}[-1,1] \rightarrow \mathbb{R}$ defined by

$$
T_{0}(f)=\int_{-1}^{1}|t| f(t) d t
$$

(a) Show that T_{0} is bounded, and compute $\left\|T_{0}\right\|$.
(b) Let $f_{0}=\chi_{[0,1]}$ and consider the operator $T: \mathcal{C}[-1,1]+\mathbb{R} f_{0} \rightarrow \mathbb{R}$ defined as

$$
T\left(f+\lambda f_{0}\right)=\int_{-1}^{1}|t| f(t) d t+\lambda, \quad f \in \mathcal{C}[-1,1], \lambda \in \mathbb{R}
$$

(i) Show that T is a linear functional that extends T_{0}.
(ii) Show that T is unbounded on $\mathcal{C}[-1,1]+\mathbb{R} f_{0}$, equipped with the L^{1} norm.
7. Let $g(t)$ be a nonnegative measurable function on the real line. Show that

$$
\left(\int_{1}^{\infty} g(t) d t\right)^{2} \leq 3 \int_{1}^{\infty} t^{4 / 3} g(t)^{2} d t
$$

Assuming that the right-hand side is finite, find all functions g for which equality holds in the preceding inequality.
8. Let f be a complex-valued measurable function on a measure space (X, μ) that satisfies:

$$
\int_{|f|<n} \frac{|f|^{2}}{\frac{1}{n}+|f|} d \mu \leq 1
$$

for all $n=1,2, \ldots$. Find the limit of

$$
\int_{|f| \geq n} \frac{|f|^{2}}{\frac{1}{n}+|f|} d \mu
$$

as $n \rightarrow \infty$.

