MAY 2019 ANALYSIS QUALIFYING EXAM

Instructions: Do all 8 problems. Use a separate sheet for each problem.

- 1. For x, t real let $\varphi(t, x) = t \sin(x) + \cos(x)$.
- (a) Prove that

$$\int_{1/n}^{n} \frac{\sin x}{x} \, dx = \int_{0}^{\infty} \frac{e^{-t/n} \varphi(t, 1/n) - e^{-nt} \varphi(t, n)}{t^2 + 1} dt.$$

Hint: Use that $1/x = \int_0^\infty e^{-xt} dt$ for x > 0 on the left hand side.

- (b) Find the limit of the expression in part (a) as $n \to \infty$. Justify your steps in parts (a) and (b).
- 2. (a) Let $\{B_n\}_{n=1}^{\infty}$ be a decreasing sequence of measurable subsets of a measure space (X, \mathcal{S}, μ) , in the sense that $B_1 \supseteq B_2 \supseteq B_3 \supseteq \cdots$. Let $B = \bigcap_{n=1}^{\infty} B_n$. Is it true that

$$\lim_{n\to\infty}\mu(B_n)=\mu(B)?$$

Prove this fact or provide a counterexample.

- (b) Suppose that $\mu(X) < \infty$. Assume that $C_n \in \mathcal{S}$, n = 1, 2, ..., satisfy $\mu(C_n) \geq \frac{1}{2}$ for all $n \in \mathbb{N}$. Prove that there exists a set $S_0 \in \mathcal{S}$ such that $\mu(S_0) > 0$ and that every $x \in S_0$ lies in C_j for infinitely many $j \in \mathbb{N}$. (*Hint*: Put $B_n = \bigcup_{k=n}^{\infty} C_k$.)
- 3. Let λ be Lebesgue measure on the σ -algebra \mathcal{L} of all Lebesgue measurable subsets of [-1,1]. Define a measure ν on $([-1,1],\mathcal{L})$ by setting

$$\nu = \delta_0 + h d\lambda$$
.

where δ_0 is Dirac mass at zero and $h(t) = e^t$, $t \in [-1, 1]$. Which of the two statements $\nu \ll \lambda$, $\lambda \ll \nu$ is true and which one is false? Justify your answers in both statements. For the true statement find the associated Radon-Nikodym derivative.

- 4. (a) State Tonelli's theorem and Fubini's theorem.
- (b) Let f be Lebesgue integrable on (0,1). For 0 < x < 1, let

$$g(x) = \int_x^1 t^{-1} f(t) dt.$$

Prove that g is Lebesgue integrable on (0,1) and that

$$\int_{0}^{1} g(x)dx = \int_{0}^{1} f(x)dx.$$

5. Let \mathcal{H} be an infinite dimensional separable Hilbert space and let $\{e_n : n \in \mathbb{N}\}$ be an orthonormal basis for \mathcal{H} . For a bounded linear operator $A : \mathcal{H} \to \mathcal{H}$ on \mathcal{H} satisfying:

$$(\alpha) \langle Af, f \rangle \ge 0$$
 $(f \in \mathcal{H})$
 $(\beta) \langle Af, g \rangle = \langle f, Ag \rangle$ $(f, g \in \mathcal{H})$

we define $tr(A^2)$, the trace of A^2 , by

$$tr(A^2) = \sum_{n=1}^{\infty} \langle A^2 e_n, e_n \rangle \left(= \sum_{n=1}^{\infty} \langle A e_n, A e_n \rangle \right).$$

Prove that the definition of $tr(A^2)$ above is not dependent on the orthonormal basis, i.e. prove that if $\{d_m : m \in \mathbb{N}\}$ is another orthonormal basis on \mathcal{H} , then

$$\sum_{n=1}^{\infty} \langle A^2 e_n, e_n \rangle = \sum_{m=1}^{\infty} \langle A^2 d_m, d_m \rangle.$$

Hint: Expand Ae_n in terms of the basis $\{d_m\}$.

- 6. (a) State the Lebesgue differentiation theorem.
- (b) Prove that there does not exist a Lebesgue measurable subset E of [0,1] such that the Lebesgue measure of $E \cap [x,1]$ is equal to $(1-x)^2$ for all $x \in [0,1]$.
- 7. Let f, g be elements of an inner product space V over \mathbb{R} . Prove that $\langle f, g \rangle = 0$ if and only if for all $\lambda \in \mathbb{R}$

$$||f|| \le ||f + \lambda g||.$$

- 8. (a) State (but do not prove) Fatou's lemma.
- (b) Suppose that f_n is a sequence of measurable functions on a measure space that satisfy $f_n \leq g$ for some $g \in L^1$. Using part (a) show that

$$\limsup_{n \to \infty} \int f_n \ d\mu \le \int \limsup_{n \to \infty} f_n \ d\mu.$$

(c) For the sequence $f_n(x) = (-1)^n \chi_{[0,1]} + (-1)^{n+1} \chi_{(1,3]}$ defined on [0,3], show that

$$\int_0^3 \limsup_{n \to \infty} f_n dx - \limsup_{n \to \infty} \int_0^3 f_n dx = \liminf_{n \to \infty} \int_0^3 f_n dx - \int_0^3 \liminf_{n \to \infty} f_n dx$$