## QUALIFYING EXAMINATION AUGUST 2019

- You are allowed to rely on a previous part of a multi-part problem even if you do not prove the previous part.
- $\bullet$   $\mathbb{Z}$  denotes the group or ring of integers with the usual operations.
- $\mathbb{Q}$ ,  $\mathbb{R}$ , and  $\mathbb{C}$  denote the groups or fields of rational, real, and complex numbers, respectively, with the usual operations.
- By a PID, we mean a Principal Ideal Domain.
- If  $n \geq 3$  is an integer, we denote by  $D_{2n}$  the dihedral group with 2n elements.
- For a square-free integer D other than 1, define  $\mathbb{Z}[\sqrt{D}] = \{a + b\sqrt{D} \mid a, b \in \mathbb{Z}\}.$
- Given a finite dimensional vector space V over a field F and an F-linear operator  $T:V\to V$ , we endow V with the structure of an F[X]-module such that  $X\cdot v=T(v)$  for all  $v\in V$ .

# ALGEBRA QUALIFYING EXAM

## (I) Groups

- (1a) [3 points] Show that every finitely generated subgroup of the additive group  $(\mathbb{Q}, +)$  is cyclic, and that  $(\mathbb{Q}, +)$  is not finitely generated.
- (1b) [3 points] Determine if the following statement is true or false and *substantiate* your answer.

Let G be an infinite group such that for each positive integer n, G has only finitely many subgroups of index n. Then G is a finitely generated group.

- (2) [8 points] Show that a group of order 48 is not simple.
- (3) [6 points] Let p, q be primes, p > q > 2. Let G be a group of order  $pq^2$ . Show that G has a subgroup of order pq. [Hint: First show that G has a unique p-Sylow subgroup.]

## (II) Rings and Fields

- (4) Let  $R = \mathbb{Z}[\sqrt{-n}]$  where n is a squarefree integer greater than 3.
- (a) [4 points] Prove that 2,  $\sqrt{-n}$  are irreducible in R.
- (b) [2 points] Prove that R is not a UFD. [For this part, feel free to use (without proof) the fact that  $1 + \sqrt{-n}$  is also irreducible in R.]
- (5) Let R be an integral domain such that every prime ideal in R is principal. Show that R is a PID by going through the following steps.
- (a) [2 points] Assume for a contradiction that the set of ideals of R which are not principal is non-empty and prove that this set has a maximal element under inclusion (which by hypothesis is not prime).
- (b) [1 point] Let I be an ideal which is maximal with respect to being non-principal and let  $a, b \in R$  with  $ab \in I$  but  $a \notin I$  and  $b \notin I$ . Consider the ideals  $I_a := (I, a)$ ,  $I_b := (I, b)$ , and  $J := \{r \in R \mid rI_a \subseteq I\}$ . Show that  $I_a$  and J are principal ideals and let  $\alpha$  and  $\beta$  be generators of  $I_a$  and J, respectively.
- (c) [3 points] Finally, show that  $I = (\alpha \beta)$ , providing thus a contradiction. This shows that R has to be a PID.
- (6) [5 points] Determine if the following statement is true or false and *substantiate* your answer.

A field extension is finite if and only if it is finitely generated by finitely many algebraic elements.

(7)[8 points] Let  $K = \mathbb{Q}(\sqrt[8]{2}, i)$  and  $F = \mathbb{Q}(\sqrt{2})$ . Show that K/F is Galois and  $Gal(K/F) \simeq D_8$ .

## (III) Modules and Linear Algebra

(8) [3 points] Determine if the following statement is true or false and *substantiate* your answer.

Over an algebraically closed field, two  $n \times n$  matrices A and B are similar if they have the same characteristic and minimal polynomials.

- (9a) [2 points] Let A be a  $5 \times 5$  complex matrix with characteristic polynomial  $c(X) = (X-2)^3(X+7)^2$  and minimal polynomial  $m(X) = (X-2)^2(X+7)$ . Find the Jordan canonical form of A.
- (9b) [3 points] Let V be a real vector space of dimension  $\geq 3$  and  $T: V \to V$  a linear map. Show that there exists a non-zero subspace W of  $V, W \neq V$ , such that  $T(W) \subseteq W$ .
- (9c) [4 points] Let  $f(X) \in \mathbb{C}[X]$  be a polynomial of positive degree. Prove that all  $n \times n$  matrices with characteristic polynomial f(X) are similar if and only if f(X) has no repeated factors in its unique factorization in  $\mathbb{C}[X]$ .
- (10) Let V be a finite dimensional vector space over a field K. Let  $T:V\to V$  be a linear transformation and  $W\leq V$  a subspace of V that is T-invariant, i.e.  $T(W)\subseteq W$ . Let  $m(X), m_1(X),$  and  $m_2(X)$  be the minimal polynomial of T as a linear operator on V, W, and V/W, respectively.
- (a) [3 points] Prove that m(X) divides  $m_1(X) \cdot m_2(X)$ .
- (b) [3 points] Prove that if  $m_1(X)$  and  $m_2(X)$  are relatively prime, then

$$m(X) = m_1(X) \cdot m_2(X).$$

(c) [2 points] Give an example of a case in which  $m(X) \neq m_1(X) \cdot m_2(X)$ .