Qualifying Examination

August 2019

- You are allowed to rely on a previous part of a multi-part problem even if you do not prove the previous part.
- \mathbb{Z} denotes the group or ring of integers with the usual operations.
- \mathbb{Q}, \mathbb{R}, and \mathbb{C} denote the groups or fields of rational, real, and complex numbers, respectively, with the usual operations.
- By a PID, we mean a Principal Ideal Domain.
- If $n \geq 3$ is an integer, we denote by $D_{2 n}$ the dihedral group with $2 n$ elements.
- For a square-free integer D other than 1 , define $\mathbb{Z}[\sqrt{D}]=\{a+b \sqrt{D} \mid a, b \in$ $\mathbb{Z}\}$.
- Given a finite dimensional vector space V over a field F and an F-linear operator $T: V \rightarrow V$, we endow V with the structure of an $F[X]$-module such that $X \cdot v=T(v)$ for all $v \in V$.

Algebra Qualifying Exam

(I) Groups

(1a) [3 points] Show that every finitely generated subgroup of the additive group $(\mathbb{Q},+)$ is cyclic, and that $(\mathbb{Q},+)$ is not finitely generated.
(1b) [3 points] Determine if the following statement is true or false and substantiate your answer.

Let G be an infinite group such that for each positive integer n, G has only finitely many subgroups of index n. Then G is a finitely generated group.
(2) $[8$ points $]$ Show that a group of order 48 is not simple.
(3) [6 points] Let p, q be primes, $p>q>2$. Let G be a group of order $p q^{2}$. Show that G has a subgroup of order $p q$. [Hint: First show that G has a unique p-Sylow subgroup.]

(II) Rings and Fields

(4) Let $R=\mathbb{Z}[\sqrt{-n}]$ where n is a squarefree integer greater than 3 .
(a) [4 points] Prove that $2, \sqrt{-n}$ are irreducible in R.
(b) [2 points] Prove that R is not a UFD. [For this part, feel free to use (without proof) the fact that $1+\sqrt{-n}$ is also irreducible in R.]
(5) Let R be an integral domain such that every prime ideal in R is principal. Show that R is a PID by going through the following steps.
(a) [2 points] Assume for a contradiction that the set of ideals of R which are not principal is non-empty and prove that this set has a maximal element under inclusion (which by hypothesis is not prime).
(b) [1 point] Let I be an ideal which is maximal with respect to being non-principal and let $a, b \in R$ with $a b \in I$ but $a \notin I$ and $b \notin I$. Consider the ideals $I_{a}:=(I, a)$, $I_{b}:=(I, b)$, and $J:=\left\{r \in R \mid r I_{a} \subseteq I\right\}$. Show that I_{a} and J are principal ideals and let α and β be generators of I_{a} and J, respectively.
(c) [3 points] Finally, show that $I=(\alpha \beta)$, providing thus a contradiction. This shows that R has to be a PID.
(6) [5 points] Determine if the following statement is true or false and substantiate your answer.

A field extension is finite if and only if it is finitely generated by finitely many algebraic elements.
(7)[8 points] Let $K=\mathbb{Q}(\sqrt[8]{2}, i)$ and $F=\mathbb{Q}(\sqrt{2})$. Show that K / F is Galois and $\operatorname{Gal}(K / F) \simeq D_{8}$.
(8) [3 points] Determine if the following statement is true or false and substantiate your answer.

Over an algebraically closed field, two $n \times n$ matrices A and B are similar if they have the same characteristic and minimal polynomials.
(9a) [2 points] Let A be a 5×5 complex matrix with characteristic polynomial $c(X)=(X-2)^{3}(X+7)^{2}$ and minimal polynomial $m(X)=(X-2)^{2}(X+7)$. Find the Jordan canonical form of A.
(9b) [3 points] Let V be a real vector space of dimension ≥ 3 and $T: V \rightarrow V$ a linear map. Show that there exists a non-zero subspace W of $V, W \neq V$, such that $T(W) \subseteq W$.
(9c) [4 points] Let $f(X) \in \mathbb{C}[X]$ be a polynomial of positive degree. Prove that all $n \times n$ matrices with characteristic polynomial $f(X)$ are similar if and only if $f(X)$ has no repeated factors in its unique factorization in $\mathbb{C}[X]$.
(10) Let V be a finite dimensional vector space over a field K. Let $T: V \rightarrow V$ be a linear transformation and $W \leq V$ a subspace of V that is T-invariant, i.e. $T(W) \subseteq W$. Let $m(X), m_{1}(X)$, and $m_{2}(X)$ be the minimal polynomial of T as a linear operator on V, W, and V / W, respectively.
(a) [3 points] Prove that $m(X)$ divides $m_{1}(X) \cdot m_{2}(X)$.
(b) [3 points] Prove that if $m_{1}(X)$ and $m_{2}(X)$ are relatively prime, then

$$
m(X)=m_{1}(X) \cdot m_{2}(X)
$$

(c) [2 points] Give an example of a case in which $m(X) \neq m_{1}(X) \cdot m_{2}(X)$.

