Qualifying Examination

May 2019

- You are allowed to rely on a previous part of a multi-part problem even if you do not prove the previous part.
- $\mathbb{N}=\{0,1,2, \ldots\}$
- \mathbb{Z} denotes the group or ring of integers with the usual operations.
- \mathbb{Q}, \mathbb{R}, and \mathbb{C} denote the groups or fields of rational, real, and complex numbers, respectively, with the usual operations.
- For a field F and positive integer $n, \operatorname{Mat}_{n \times n}(F)$ denotes the space of $n \times n$ matrices with entries in F. The identity $n \times n$ matrix is denoted by I_{n}.
- If n is a positive integer, the ring of integers modulo n is denoted by \mathbb{Z}_{n}; if m is an arbitrary integer, its class modulo n is denoted by $\bar{m} \in \mathbb{Z}_{n}$.
- If $n \geq 3$ is an integer, we denote by $D_{2 n}$ the dihedral group with $2 n$ elements.
- For a square-free integer D other than 1 , define $\mathbb{Z}[\sqrt{D}]=\{a+b \sqrt{D} \mid a, b \in$ $\mathbb{Z}\}$.
- Given a finite dimensional vector space V over a field F and an F-linear operator $T: V \rightarrow V$, we endow V with the structure of an $F[X]$-module such that $X \cdot v=T(v)$ for all $v \in V$.
- If R is a ring and M a (left) R-module, the annihilator of M in R is $A n n_{R}(M)=\{r \in R \mid r \cdot m=0, \forall m \in M\}$.

Algebra Qualifying Exam

(I) Groups

(1) Determine if the following statements are true or false and substantiate your answer.
(a) [2 points] There are no non-constant group homomorphisms from A_{8} to D_{8}.
(b) [3 points] Let G be a group and let H, K be two normal subgroups of G such that $G / H \simeq K$. Then G / K is isomorphic to H.
(2a) [2 points] Let G be a non-trivial group whose only subgroups are $\{1\}$ and G. Show that $G \simeq \mathbb{Z}_{p}$ for a prime number p.
(2b) [2 points] Let G be a group and N a normal subgroup of G with $N \neq\{1\}$ and $N \neq G$. Show that N is a maximal subgroup of G if and only if $|G: N|$ is a prime number.
(3a) [4 points] Classify all groups of order p^{2} where p is a prime number.
(3b) [7 points] Show that a group of order 72 is not simple.
(II) Rings
(4) Determine if the following statements are true or false and substantiate your answer.
(a) [2 points] The polynomial $f(X, Y)=X^{2}+Y^{2}-1$ is irreducible in $\mathbb{Q}[X, Y]$.
(b) [2 points] If R is a PID and $p \in R$ is irreducible then (p) is a maximal ideal of R.
(5) Let $R=\mathbb{Z}[\sqrt{-5}]$ and define the ideal $I=(3,2+\sqrt{-5})$.
(a) [4 points] Show that I is not a principal ideal.
(b) [4 points] Show that $1+\sqrt{-5}$ is an irreducible but not a prime element of R.
(6) Let R be a commutative ring with $1 \neq 0$ and let

$$
\mathfrak{N}(R)=\left\{a \in R \mid a^{n}=0 \text { for some positive integer } n\right\} .
$$

(a) [5 points] Show that $\mathfrak{N}(R)$ is the intersection of all prime ideals of R.
(b) [3 points] Use part (a) to show that if $p(x) \in R[x]$ is a unit then all of its coefficients, except the constant term, must be nilpotent elements in R.

(III) Fields

7) Determine if the following statements are true or false and substantiate your answer.
(a) [1 points] Any algebraically closed field is infinite.
(b) $[2$ points $]$ Suppose that $F=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ where $\alpha_{i}^{2} \in \mathbb{Q}$ for $i \in\{1,2, \ldots, n\}$. Prove that $\sqrt[3]{2} \notin F$.
(8) [8 points] Let $K=\mathbb{Q}(\sqrt[8]{2}, i)$ and $F=\mathbb{Q}(i)$. Show that K / F is a Galois extension and $\operatorname{Gal}(K / F) \simeq \mathbb{Z}_{8}$.
(9) Let F be a field of characteristic $\neq 2$.
(a) $[4$ points $]$ If E / F is a quadratic extension, i.e. $[E: F]=2$, prove that $E=F(\sqrt{D})$ where D is a square-free element of F.
(b) [5 points] If $K=F\left(\sqrt{D_{1}}, \sqrt{D_{2}}\right)$ where $D_{1}, D_{2} \in F$ have the property that none of D_{1}, D_{2}, or $D_{1} \cdot D_{2}$ is a square in F, prove that K / F is a Galois extension with $\operatorname{Gal}(K / F)$ isomorphic to the Klein 4 -group $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

(IV) Modules and Linear Algebra

(10) Determine if the following statements are true or false and substantiate your answer.
(a) [1 points] Let R be a ring and M a left R-module. The torsion subset of M is a submodule of M.
(b) [4 points] Let V be a real vector space of odd dimension and $T: V \rightarrow V$ a linear operator on V. If the minimal polynomial of T is irreducible then T is diagonalizable (i.e. there exists a basis \mathcal{B} of V such that the matrix representation of T with respect to \mathcal{B} is a diagonal matrix).
(11) [5 points] Determine all possible Jordan canonical forms for a linear transformation with characteristic polynomial $(x-2)^{3}(x-3)^{2}$.
(12a) [5 points] Let N_{1} and N_{2} be two 5×5 nilpotent matrices over a field F. Show that if N_{1} and N_{2} have the same rank and the same minimal polynomial then N_{1} and N_{2} are similar.
(12b) [5 points] Let A and B be two $n \times n$ matrices over a field F such that A and B have the same characteristic polynomial

$$
c(X)=\left(X-\lambda_{1}\right)^{d_{1}} \cdot \ldots \cdot\left(X-\lambda_{l}\right)^{d_{l}},
$$

with $\lambda_{1}, \ldots, \lambda_{l} \in K$ pairwise distinct. Suppose furthermore that A and B have the same minimal polynomial, and that the matrices $A-\lambda_{i} \cdot I_{n}$ and $B-\lambda_{i} \cdot I_{n}$ have the same rank for all $i \in\{1, \ldots, l\}$. If $d_{i} \leq 5$ for all $i \in\{1, \ldots, l\}$ show that A and B are similar.

