QUALIFYING EXAMINATION MAY 2019

- You are allowed to rely on a previous part of a multi-part problem even if you do not prove the previous part.
- $\mathbb{N} = \{0, 1, 2, \ldots\}$
- \bullet Z denotes the group or ring of integers with the usual operations.
- \mathbb{Q} , \mathbb{R} , and \mathbb{C} denote the groups or fields of rational, real, and complex numbers, respectively, with the usual operations.
- For a field F and positive integer n, $\operatorname{Mat}_{n\times n}(F)$ denotes the space of $n\times n$ matrices with entries in F. The identity $n\times n$ matrix is denoted by I_n .
- If n is a positive integer, the ring of integers modulo n is denoted by \mathbb{Z}_n ; if m is an arbitrary integer, its class modulo n is denoted by $\overline{m} \in \mathbb{Z}_n$.
- If $n \geq 3$ is an integer, we denote by D_{2n} the dihedral group with 2n elements.
- For a square-free integer D other than 1, define $\mathbb{Z}[\sqrt{D}] = \{a + b\sqrt{D} \mid a, b \in \mathbb{Z}\}.$
- Given a finite dimensional vector space V over a field F and an F-linear operator $T: V \to V$, we endow V with the structure of an F[X]-module such that $X \cdot v = T(v)$ for all $v \in V$.
- If R is a ring and M a (left) R-module, the annihilator of M in R is $Ann_R(M) = \{r \in R \mid r \cdot m = 0, \forall m \in M\}.$

ALGEBRA QUALIFYING EXAM

(I) Groups

- (1) Determine if the following statements are true or false and *substantiate* your answer.
- (a) [2 points] There are no non-constant group homomorphisms from A_8 to D_8 .
- (b) [3 points] Let G be a group and let H, K be two normal subgroups of G such that $G/H \simeq K$. Then G/K is isomorphic to H.
- (2a) [2 points] Let G be a non-trivial group whose only subgroups are $\{1\}$ and G. Show that $G \simeq \mathbb{Z}_p$ for a prime number p.
- (2b) [2 points] Let G be a group and N a normal subgroup of G with $N \neq \{1\}$ and $N \neq G$. Show that N is a maximal subgroup of G if and only if |G:N| is a prime number.
- (3a) [4 points] Classify all groups of order p^2 where p is a prime number.
- (3b) [7 points] Show that a group of order 72 is not simple.

(II) Rings

- (4) Determine if the following statements are true or false and *substantiate* your answer.
- (a) [2 points] The polynomial $f(X,Y) = X^2 + Y^2 1$ is irreducible in $\mathbb{Q}[X,Y]$.
- (b) [2 points] If R is a PID and $p \in R$ is irreducible then (p) is a maximal ideal of R
- (5) Let $R = \mathbb{Z}[\sqrt{-5}]$ and define the ideal $I = (3, 2 + \sqrt{-5})$.
- (a) [4 points] Show that I is not a principal ideal.
- (b) [4 points] Show that $1 + \sqrt{-5}$ is an irreducible but not a prime element of R.
- (6) Let R be a commutative ring with $1 \neq 0$ and let

$$\mathfrak{N}(R) = \{ a \in R \mid a^n = 0 \text{ for some positive integer } n \}.$$

- (a) [5 points] Show that $\mathfrak{N}(R)$ is the intersection of all prime ideals of R.
- (b) [3 points] Use part (a) to show that if $p(x) \in R[x]$ is a unit then all of its coefficients, except the constant term, must be nilpotent elements in R.

(III) Fields

- 7) Determine if the following statements are true or false and *substantiate* your answer.
- (a) [1 points] Any algebraically closed field is infinite.
- (b) [2 points] Suppose that $F = \mathbb{Q}(\alpha_1, \dots, \alpha_n)$ where $\alpha_i^2 \in \mathbb{Q}$ for $i \in \{1, 2, \dots, n\}$. Prove that $\sqrt[3]{2} \notin F$.

- (8) [8 points] Let $K = \mathbb{Q}(\sqrt[8]{2}, i)$ and $F = \mathbb{Q}(i)$. Show that K/F is a Galois extension and $Gal(K/F) \simeq \mathbb{Z}_8$.
- (9) Let F be a field of characteristic $\neq 2$.
- (a) [4 points] If E/F is a quadratic extension, i.e. [E:F]=2, prove that $E=F(\sqrt{D})$ where D is a square-free element of F.
- (b) [5 points] If $K = F(\sqrt{D_1}, \sqrt{D_2})$ where $D_1, D_2 \in F$ have the property that none of D_1, D_2 , or $D_1 \cdot D_2$ is a square in F, prove that K/F is a Galois extension with Gal(K/F) isomorphic to the Klein 4-group $\mathbb{Z}_2 \times \mathbb{Z}_2$.

(IV) Modules and Linear Algebra

- (10) Determine if the following statements are true or false and *substantiate* your answer.
- (a) [1 points] Let R be a ring and M a left R-module. The torsion subset of M is a submodule of M.
- (b) [4 points] Let V be a real vector space of odd dimension and $T: V \to V$ a linear operator on V. If the minimal polynomial of T is irreducible then T is diagonalizable (i.e. there exists a basis \mathcal{B} of V such that the matrix representation of T with respect to \mathcal{B} is a diagonal matrix).
- (11) [5 points] Determine all possible Jordan canonical forms for a linear transformation with characteristic polynomial $(x-2)^3(x-3)^2$.
- (12a) [5 points] Let N_1 and N_2 be two 5×5 nilpotent matrices over a field F. Show that if N_1 and N_2 have the same rank and the same minimal polynomial then N_1 and N_2 are similar.
- (12b) [5 points] Let A and B be two $n \times n$ matrices over a field F such that A and B have the same characteristic polynomial

$$c(X) = (X - \lambda_1)^{d_1} \cdot \ldots \cdot (X - \lambda_l)^{d_l},$$

with $\lambda_1, \ldots, \lambda_l \in K$ pairwise distinct. Suppose furthermore that A and B have the same minimal polynomial, and that the matrices $A - \lambda_i \cdot I_n$ and $B - \lambda_i \cdot I_n$ have the same rank for all $i \in \{1, \ldots, l\}$, . If $d_i \leq 5$ for all $i \in \{1, \ldots, l\}$ show that A and B are similar.