ANALYSIS QUALIFYING EXAM AUGUST 2017

Instructions:

- Do ten questions.
- Do at most one question on each sheet of paper.
- Put your name on each sheet of paper you hand in.
- Use a paper clip to put your answers together.
- (1) Define the Lebesgue outer measure $m^* : \mathcal{P}(\mathbb{R}) \to [0, \infty]$. Show $m^*(I) = \ell(I)$ for any interval I, where $\ell(I)$ denotes the length of I. Remember to include the cases where I is closed, open, half-open, and unbounded.
- (2) Give Carathéodory's definition for a subset of \mathbb{R} to be Lebesgue measurable. Show that if A and B are measurable, so is $A \cup B$. Show that if A and B are measurable and $A \cap B = \emptyset$, then $m(A \cup B) = m(A) + m(B)$.
- (3) Use the axiom of choice to show the existence of a non-measurable set.
- (4) Define what it means for a function $f : \mathbb{R} \to [-\infty, \infty]$ to be measurable. Show that if f is measurable, and B is Borel, then $f^{-1}(B)$ is measurable.
- (5) Suppose that we have defined $\int f$ for f simple and supported on a set of finite measure, and that we know that this definition is additive. Show how to define $\int f$ for any measurable $f \geq 0$. Show that $\int (f+g) = \int f + \int g$ whenever $f, g \geq 0$.
- (6) Give the statement of Vitali's Convergence Theorem for uniformly integrable sequences of functions. Define what it means for a function to be absolutely continuous. Show that if f is absolutely continuous and increasing on [a, b], then $\int_a^b f' = f(b) f(a)$.
- $\int_a^b f' = f(b) f(a)$. (7) Define the spaces $L^p(E)$ for $1 \le p < \infty$ where E is a measurable subset of \mathbb{R} . State and prove Minkowski's inequality. You may quote Hölder's inequality without proof.
- (8) Show that the simple functions are dense in $L^p(E)$ for $1 \le p < \infty$ for any measurable E. Show that the step functions are dense in $L^p(I)$ for $1 \le p < \infty$ for any interval bounded I.
- (9) Consider the sequence of functions $f_n(x) = \sin(nx)$ on [0,1]. Show that f_n converges weakly to the zero function on $L^p([0,1])$. (Hint, first show that $\int_{[0,1]} f_n I_{[a,b]} \to 0$ for any $0 \le a \le b \le 1$.)
- (10) State the Tonelli and Fubini Theorems. You may assume the construction of the product measure without proof. Give a counterexample to Tonelli's Theorem that shows the necessity of the assumptions that the measure spaces are σ -finite.
- (11) Define what is meant by a signed measure on a sigma-algebra. Define what it means for a measurable set to be positive with respect to a signed measure. Show that for any signed measure, then there exists a positive measurable set, whose complement is also positive. (For simplicity, you may assume throughout that the signed measure is bounded.)

Date: 08/14/17.

- (12) State and prove the Radon-Nikodyn Theorem. You may assume that all measures are finite and unsigned. You may assume the Riesz Representation Theorem for Hilbert spaces, or the Jordon/Hahn Decomposition Theorem for signed measures, without proof.
- (13) State the Closed Graph Theorem. Show that a closed subspace Y of a Banach space X has a closed complement if and only if there is a continuous projection $X \to Y$.