Qualifying Examination

(August 2018)

- You are allowed to rely on a previous part of a multi-part problem even if you do not prove the previous part.
- Let n denote a positive natural number, i.e., $n \in \mathbb{N}^{+}$.
- Let S_{n} denote the symmetric group on n letters.
- Let \mathbb{Z} denote the group or ring of integers with the usual operations and let \mathbb{Q}, \mathbb{R}, and \mathbb{C} denote the groups or fields of rational, real, and complex numbers, respectively, with the usual operations.
- All rings are assumed to be commutative with identity. The set of all prime ideals in R is denoted by $\operatorname{Spec}(R)$.
- Let K denote a field and $\mathcal{M}_{n \times n}(K)$ denote the set of all $n \times n$ matrices with entries in K. Let (V, \mathcal{B}, f) stand for the n-dimensional K-vector space V with basis \mathcal{B} and bilinear form $f: V \times V \rightarrow K$. Let $[f]_{\mathcal{B}}$ be the representing matrix of the bilinear form f on V with respect to the basis \mathcal{B}. Let I denote the $n \times n$ identity matrix over the field K.

Algebra Qualifying Exam

(I)Groups

(1) Let H be a subgroup of the group G and let $a \in H$.
(a) (1point) Define the centralizer $C_{G}(a)$ of a in G and the centralizer $C_{H}(a)$ of a in H.
(b) (4points) Let G be a finite group and $[G: H]=2$. Let $m:=\left|\left\{g a g^{-1}: g \in G\right\}\right|$ and $n:=\left|\left\{h a h^{-1}: h \in H\right\}\right|$. Prove that either $n=m$ or $n=m / 2$.
(2) Let G be a finite group and let $Z(G)$ denote the center $\{g \in G: g a=a g$ for all $a \in G\}$ of G.
(a) (2points) Carefully state the class equation for groups.
(b) (3points) Let p be a prime such that p divides $|G|$. Suppose that, for each $x \in G \backslash Z(G)$, the prime p does not divide $\left|C_{G}(x)\right|$. Prove that p divides $|Z(G)|$.
(c) (2points) Prove Cauchy's Theorem. You may assume (i.e., do not prove) Cauchy's Theorem for the case of all abelian groups.
(3) (3points) Determine if the following statement is true or false and substantiate your answer. There is no simple group of order 30 .
(4) Let G^{\prime} stand for the commutator subgroup of the group G. Determine if the following statement is true or false and substantiate your answer.
(a) (2points) Let H be a normal subgroup of G. If G / H is an abelian group, then $G^{\prime} \leq H$.
(b) (3points) If $G^{\prime}=G$ and $G \neq\left\{1_{g}\right\}$, then G is solvable.

(II)Rings

(5) (5points) Let R be a principal ideal domain and let $\left\{a_{i}: i \in \mathbb{N}^{+}\right\}$be a subset of non-zero, non-unit elements of R such that a_{i+1} divides a_{i} for each $i \in \mathbb{N}^{+}$. Prove that there exists an $n \in \mathbb{N}^{+}$such that $\left(a_{i}\right)=\left(a_{n}\right)$ for all $i \geq n$. (Since this statement implies that principal ideal domains are noetherian rings, your proof should not invoke the noetherian property.)
(6a) (5points) State Eisenstein's Criterion.
(6b) (5points) Determine if the following statement is true or false and substantiate your answer. The polynomial $f(X)=3(X-1)^{3}-8(X-1)^{2}+4(X-1)+2$ is irreducible in $\mathbb{Q}[X]$.
(7) (5points) Let S be a multiplicatively closed subset of the ring R. Determine if the following statement is true or false and substantiate your answer.
The ring homomorphism $\phi: R \rightarrow S^{-1} R$, given by $\phi(r)=r / 1_{R}$ is a monomorphism.

(III)Fields

(8) (5points) Let F be a field extension of the field K with $u \in F$ algebraic over K. Prove that there exists a monic, irreducible polynomial $f(X) \in K[X]$ such that $f(u)=0$ and such that $K[u]$ is ring-isomorphic to $K[X] /(f(X))$.
(9) Let p be a prime, $n \in \mathbb{N}^{+}, q:=p^{n}$, and F be a splitting field of $f(X):=X^{q}-X$ over the prime field \mathbb{Z}_{p}. Let $\mathcal{F}_{0}:=\{u \in F \mid f(u)=0\}=\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}$ with $\left|\mathcal{F}_{0}\right|=t$.
(a) (3points) What is t, i.e., how many distinct roots does $f(X)$ have? (Substantiate your answer.)
(b) (5points) Show that \mathcal{F}_{0} is a field.
(10) (7points) Let $E=\mathbb{Q}(\sqrt{2}, \sqrt{3})$ be the splitting field of $f(X)=\left(X^{2}-2\right)\left(X^{2}-\right.$ $3) \in \mathbb{Q}[X]$ over \mathbb{Q}. Compute the Galois group $A^{(} t_{\mathbb{Q}}(E)=\operatorname{Gal}(E / \mathbb{Q})$.
(IV)Modules
(11) Let R be a ring. Determine if the following statement is true or false and substantiate your answer.
(a) (5points) Every R-module M is a submodule of a projective R-module.
(b) (5points) If G is a non-zero, abelian group, then $G \otimes_{\mathbb{Z}} G \neq 0$.
(c) (5points) Let L, M, N be three non-zero R-modules such that $\operatorname{Hom}_{R}(L, N)=0$. Then $H o m_{R}\left(L \otimes_{R} M, N\right)=0$.
(12) (5points) Let R be a principal ideal domain and E be a divisible R-module. Prove that E is an injective R-module.

(V)LinearAlgebra

(13) (5points) State and prove Riesz' Representation Theorem.
(14) (5points) Determine if the following statement is true or false and substantiate your answer. Let (V, \mathcal{B}, f) be a real, bilinear form such that

$$
[f]_{\mathcal{B}}=\left(\begin{array}{lll}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

then f has an orthonormal basis.
(15) (5points) Substantiate fully your answers in the following. Let $A \in \mathcal{M}_{5 \times 5}(\mathbb{R})$ be of minimal rank with respect to having $\{-1,0,1\}$ as its set of all characteristic values. Write down (up to similarity) all the possible Jordan Canonical Forms of A.
(16) (5points) Let $A \in \mathcal{M}_{n \times n}(K)$ such that $n \geq 2, A^{n}=0_{n \times n}$, and $A^{n-1} \neq 0_{n \times n}$. Prove that there does not exist a matrix $B \in \mathcal{M}_{n \times n}(K)$ such that $B^{2}=A$.

