Qualifying Examination

(August 2018)

- You are allowed to rely on a previous part of a multi-part problem even if you do not prove the previous part.
- Let n denote a positive natural number, i.e., $n \in \mathbb{N}^+$.
- Let S_n denote the symmetric group on n letters.
- Let \mathbb{Z} denote the group or ring of integers with the usual operations and let \mathbb{Q} , \mathbb{R} , and \mathbb{C} denote the groups or fields of rational, real, and complex numbers, respectively, with the usual operations.
- All rings are assumed to be commutative with identity. The set of all prime ideals in R is denoted by Spec(R).
- Let K denote a field and $\mathcal{M}_{n\times n}(K)$ denote the set of all $n\times n$ matrices with entries in K. Let (V, \mathcal{B}, f) stand for the n-dimensional K-vector space V with basis \mathcal{B} and bilinear form $f: V \times V \to K$. Let $[f]_{\mathcal{B}}$ be the representing matrix of the bilinear form f on V with respect to the basis \mathcal{B} . Let I denote the $n \times n$ identity matrix over the field K.

Algebra Qualifying Exam

(I)Groups

- (1) Let H be a subgroup of the group G and let $a \in H$.
- (a) (1point) Define the centralizer $C_G(a)$ of a in G and the centralizer $C_H(a)$ of a in H.
- (b) (4points) Let G be a finite group and [G:H]=2. Let $m:=|\{gag^{-1}:g\in G\}|$ and $n:=|\{hah^{-1}:h\in H\}|$. Prove that either n=m or n=m/2.
- (2) Let G be a finite group and let Z(G) denote the center $\{g \in G : ga = ag \text{ for all } a \in G\}$ of G.
- (a) (2points) Carefully state the class equation for groups.
- (b) (3points) Let p be a prime such that p divides |G|. Suppose that, for each $x \in G \setminus Z(G)$, the prime p does not divide $|C_G(x)|$. Prove that p divides |Z(G)|.
- (c) (2points) Prove Cauchy's Theorem. You may assume (i.e., do not prove) Cauchy's Theorem for the case of all abelian groups.
- (3) (3points) Determine if the following statement is true or false and substantiate your answer. There is no simple group of order 30.
- (4) Let G' stand for the commutator subgroup of the group G. Determine if the following statement is true or false and *substantiate* your answer.
- (a) (2points) Let H be a normal subgroup of G. If G/H is an abelian group, then $G' \leq H$.
- (b) (3points) If G' = G and $G \neq \{1_g\}$, then G is solvable.

(II)Rings

- (5) (5points) Let R be a principal ideal domain and let $\{a_i : i \in \mathbb{N}^+\}$ be a subset of non-zero, non-unit elements of R such that a_{i+1} divides a_i for each $i \in \mathbb{N}^+$. Prove that there exists an $n \in \mathbb{N}^+$ such that $(a_i) = (a_n)$ for all $i \geq n$. (Since this statement implies that principal ideal domains are noetherian rings, your proof should not invoke the noetherian property.)
- (6a) (5points) State Eisenstein's Criterion.
- (6b) (5points) Determine if the following statement is true or false and substantiate your answer. The polynomial $f(X) = 3(X-1)^3 8(X-1)^2 + 4(X-1) + 2$ is irreducible in $\mathbb{Q}[X]$.
- (7) (5points) Let S be a multiplicatively closed subset of the ring R. Determine if the following statement is true or false and substantiate your answer. The ring homomorphism $\phi: R \to S^{-1}R$, given by $\phi(r) = r/1_R$ is a monomorphism.

(III)Fields

- (8) (5points) Let F be a field extension of the field K with $u \in F$ algebraic over K. Prove that there exists a monic, irreducible polynomial $f(X) \in K[X]$ such that f(u) = 0 and such that K[u] is ring-isomorphic to K[X]/(f(X)).
- (9) Let p be a prime, $n \in \mathbb{N}^+$, $q := p^n$, and F be a splitting field of $f(X) := X^q X$ over the prime field \mathbb{Z}_p . Let $\mathcal{F}_0 := \{u \in F \mid f(u) = 0\} = \{u_1, u_2, \dots, u_t\}$ with $\mid \mathcal{F}_0 \mid = t$.
- (a) (3points) What is t, i.e., how many distinct roots does f(X) have? (Substantiate your answer.)
- (b) (5points) Show that \mathcal{F}_0 is a field.
- (10) (7points) Let $E = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ be the splitting field of $f(X) = (X^2 2)(X^2 3) \in \mathbb{Q}[X]$ over \mathbb{Q} . Compute the Galois group $Aut_{\mathbb{Q}}(E) = Gal(E/\mathbb{Q})$.

(IV)Modules

- (11) Let R be a ring. Determine if the following statement is true or false and substantiate your answer.
- (a) (5points) Every R-module M is a submodule of a projective R-module.
- (b) (5points) If G is a non-zero, abelian group, then $G \otimes_{\mathbb{Z}} G \neq 0$.
- (c) (5points) Let L, M, N be three non-zero R-modules such that $Hom_R(L, N) = 0$. Then $Hom_R(L \otimes_R M, N) = 0$.
- (12) (5points) Let R be a principal ideal domain and E be a divisible R-module. Prove that E is an injective R-module.

(V)LinearAlgebra

- (13) (5points) State and prove Riesz' Representation Theorem.
- (14) (5points) Determine if the following statement is true or false and substantiate your answer. Let (V, \mathcal{B}, f) be a real, bilinear form such that

$$[f]_{\mathcal{B}} = \left(\begin{array}{ccc} -1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & -1 \end{array}\right),$$

then f has an orthonormal basis.

(15) (5points) Substantiate fully your answers in the following. Let $A \in \mathcal{M}_{5\times 5}(\mathbb{R})$ be of minimal rank with respect to having $\{-1,0,1\}$ as its set of all characteristic values. Write down (up to similarity) all the possible Jordan Canonical Forms of A.

(16) (5points) Let $A \in \mathcal{M}_{n \times n}(K)$ such that $n \ge 2, A^n = 0_{n \times n}$, and $A^{n-1} \ne 0_{n \times n}$. Prove that there does not exist a matrix $B \in \mathcal{M}_{n \times n}(K)$ such that $B^2 = A$.