Qualifying Examination

(May 2018)

- You are allowed to rely on a previous part of a multi-part problem even if you do not prove the previous part.
- Let n denote a positive natural number, i.e., $n \in \mathbb{N}^{+}$.
- Let S_{n} denote the symmetric group on n letters.
- Let \mathbb{Z} denote the group or ring of integers with the usual operations and let \mathbb{Q}, \mathbb{R}, and \mathbb{C} denote the groups or fields of rational, real, and complex numbers, respectively, with the usual operations.
- All rings are assumed to be commutative with identity.
- Let K denote a field and $\mathcal{M}_{n \times n}(K)$ denote the set of all $n \times n$ matrices with entries in K. Let (V, \mathcal{B}, f) stand for the n-dimensional K-vector space V with basis \mathcal{B} and bilinear form $f: V \times V \rightarrow K$. Let $[f]_{\mathcal{B}}$ be the representing matrix of the bilinear form f on V with respect to the basis \mathcal{B}. Let I denote the $n \times n$ identity matrix over the field K.

Algebra Qualifying Exam

(I)Groups

(1a) (3points) State Cauchy's Theorem.
(1b) (4points) Give a self-contained proof of Cauchy's Theorem for the case that the group in question is abelian. (Obviously, your proof must not invoke Cauchy's Theorem.)
(2a) (5points) Let H be a subgroup of G such that $[G: H]=n$. Prove that there exists a group homomorphism $\phi: G \rightarrow S_{n}$ with $\operatorname{Ker}(\phi)$ a subgroup of H.
(2b) (5points) Prove that there is no simple group of order 36.
(3) (3points) Determine if the following statement is true or false and substantiate your answer.
The symmetric group S_{5} is a solvable group.

(II)Rings

(4a) (5points) State Eisenstein's Criterion.
(4b) (5points) Determine if the following statement is true or false and substantiate your answer.
Let $f(X)=2 X^{5}-6 X^{3}+9 X^{2}-15 \in \mathbb{Z}[X]$. Then $f(X)$ is irreducible in $\mathbb{Q}[X]$ and in $\mathbb{Z}[X]$.
(5) Let R be a commutative ring with identity 1_{R}. Let S be a multiplicatively closed subset of the ring R such that $0_{R} \notin S$.
(a) (5points) Prove that there exists an ideal I of R, maximal with respect to $I \cap S=\emptyset$.
(b) (5points) Prove that the ideal I in (5a), above, is a prime ideal of R.

(III)Fields

(6) (5points) Let F be a finite-dimensional field extension of the field K. Prove that F is an algebraic and finitely generated field extension of K.
(7a) (5points) Let K be a field such that $|K|=q<\infty$. Let $f(X):=X^{q}-X \in$ $K[X]$. Prove that $f(a)=0_{K}$ for each $a \in K$.
($\mathbf{7 b}$) (5points) Determine if the following statement is true or false and substantiate your answer.
Let K be a field such that $|K|=4$ and let F be a field such that $|F|=8$. Then K cannot be a subfield of F.
(8) (5points) Let K be a field and $g(X) \in K[X]$ be a monic, irreducible polynomial. Let $E=K\left(u_{1}, u_{2}\right)$ be a splitting field of $g(X)$ over K such that $u_{1} \neq u_{2}$ and $g(X)=\left(X-u_{1}\right)^{n_{1}}\left(X-u_{2}\right)^{n_{2}}$ for some $n_{1}, n_{2} \in \mathbb{N}^{+}$. What is the relationship between $\operatorname{deg}(g(X))$ and n_{1} ? Give a detailed proof and state precisely any results that you are using.

(IV)Modules

(9)
(a) (5points) Give the definition of a divisible R-module.
(b) (5points) Let E be an injective R-module. Prove that E is a divisible R module.
(10) Determine if the following statement is true or false and substantiate your answer.
(a) (5points) R is a flat R-module.
(b) (5points) Let L, M, N be non-zero R-modules such that $L \otimes_{R} M=0$. Then $\operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(L, N)\right)=0=\operatorname{Hom}_{R}\left(L, \operatorname{Hom}_{R}(M, N)\right)$.

(V)LinearAlgebra

(11) (5points) Determine if the following statement is true or false and substantiate your answer.
Let (V, \mathcal{B}, f) be a real (i.e., $K=\mathbb{R})$, bilinear form such that

$$
[f]_{\mathcal{B}}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Then f has an orthonormal basis \mathcal{B}^{\prime} for V.
(12) Substantiate fully your answers in the following. Let

$$
A:=\left(\begin{array}{lll}
3 & 0 & 0 \\
-2 & 1 & 0 \\
5 & 1 & 1
\end{array}\right)
$$

(a) (5points) Is A diagonalizable over \mathbb{R} ?
(b) (5points) Compute the matrix $A^{3}-5 A^{2}+8 A-3 I$.
(13) (5points) Substantiate fully your answers in the following. Let $A \in \mathcal{M}_{5 \times 5}(\mathbb{R})$ be of minimal rank with respect to having $\{0,1,2\}$ as its set of all characteristic values. Write down (up to similarity) all the possible Jordan Canonical Forms of A.

