Analysis Qualifying Exam - August 2022

Work through all parts. Your work will be graded for correctness, completeness, and clarity.
Note: Below \mathcal{L} denotes the class of Lebesgue measurable sets in \mathbb{R}^{n}, m the Lebesgue measure on $\left(\mathbb{R}^{n}, \mathcal{L}\right),|E|=m(E)$.

1. For f in $L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$ define the following versions of the Hardy-Littlewood maximal function:

$$
\begin{gathered}
M_{1} f(x)=\sup _{r>0} \frac{1}{|B(x, r)|} \int_{B(x, r)}|f(y)| d m(y), \quad M_{2} f(x)=\sup _{B_{x}} \frac{1}{\left|B_{x}\right|} \int_{B_{x}}|f(y)| d m(y) \\
M_{3} f(x)=\sup _{r>0} \frac{1}{|Q(x, r)|} \int_{Q(x, r)}|f(y)| d m(y)
\end{gathered}
$$

where $B(x, r)$ is the open ball with center x and radius $r, Q(x, r)$ is the (closed) cube centered at x with edges parallel to the coordinate axes and with length $2 r$, and where B_{x} is any open ball containing x.
(a) Let $n=2$ and find explicit constants $a, b, c, d>0$ such that

$$
a M_{1} f(x) \leq M_{3} f(x) \leq b M_{1} f(x), \quad c M_{1} f(x) \leq M_{2} f(x) \leq d M_{1} f(x), \quad \forall x \in \mathbb{R}^{2}
$$

(Note: this is also true in \mathbb{R}^{n} - when $n=2$ computations are slightly easier).
(b) State the Hardy-Littlewood Theorem (about the maximal function) in \mathbb{R}^{n}, and explain why in \mathbb{R}^{2} the theorem works for any of the above versions of the H -L maximal function (note: this is also true in \mathbb{R}^{n}).
(c) Show that if $M_{2} f\left(x_{0}\right)>\alpha$ then there is $\delta>0$ such that $M_{2} f(x)>\alpha$ when $\left|x-x_{0}\right|<\delta$.
2. (a) Show that the space $B([0, \infty])=\{f:[0, \infty) \rightarrow \mathbb{C}$, bounded, measurable $\}$ is an inner product space under

$$
(f, g)=\int_{[0, \infty)} \frac{f(x) \overline{g(x)}}{1+x^{3}} d m(x)
$$

(b) Show that the space $(B([0, \infty]),(\cdot, \cdot))$ is not a Hilbert space.
(c) Let $\left\{e_{j}\right\}_{1}^{\infty}$ be an orthonormal basis of $L^{2}\left(\mathbb{R}^{n}\right)$, endowed with the natural inner product that makes it a Hilbert space (over \mathbb{C}). Show that if $e_{j k}(x, y)=e_{j}(x) e_{k}(y)$, for $x, y \in \mathbb{R}^{n}$ and $j, k \in \mathbb{N}$ then $\left\{e_{j k}\right\}_{j, k \in \mathbb{N}}$ is an orthonormal basis of the Hilbert space $L^{2}\left(\mathbb{R}^{2 n}\right)$ (with its natural inner product).
3. (a) Define the concept of bounded linear functional on a normed vector space $(X,\|\cdot\|)$. Define the dual X^{*} of the space X.
(b) State the Hahn-Banach Theorem on normed vector spaces.
(c) Let $\|\cdot\|_{1},\|\cdot\|_{2}$ be two norms on X. Show that $\|(x, y)\|:=\|x\|_{1}+\|y\|_{2}(x, y \in X)$, defines a norm on the vector space $X \times X$.
(d) In the notation of $3(\mathrm{c})$ above, suppose that f is a linear functional on X such that $|f(x)| \leq\|(x, x)\|$ for all $x \in X$. Show that there exist f_{1}, f_{2} linear functionals on X such that $f=f_{1}+f_{2}$ and $\left|f_{1}(x)\right| \leq\|x\|_{1},\left|f_{2}(x)\right| \leq\|x\|_{2}$, for all $x \in X$.
4. (a) Define what it means for a measure space (X, \mathcal{M}, μ) to be σ-finite.
(b) Show that if (X, \mathcal{M}, μ) is σ-finite and $E \in \mathcal{M}$ is so that $\mu(E)>0$, then there is $F \in \mathcal{M}$ such that $F \subseteq E$ and $0<\mu(F)<\infty$. With an example show that this conclusion may fail without the σ-finiteness hypothesis.
(c) Let (X, \mathcal{M}, μ) be a σ-finite measure space and let $f \in L^{1}(\mu)$, and real-valued. Define the set of real numbers

$$
A_{f}:=\left\{\frac{1}{\mu(E)} \int_{E} f d \mu: E \in \mathcal{M}, 0<\mu(E)<\infty\right\}
$$

Prove that if $A_{f} \subseteq[a, b]$, then $a \leq f(x) \leq b$ for almost every $x \in X$. [Hint: argue by contradiction.]
5. (a) Let X, Y be normed spaces, let $T_{n}, T: X \rightarrow Y$ be bounded linear operators, and $x_{n}, x \in X$. Show that if $T_{n} \rightarrow T$ (in the operator norm topology) and $x_{n} \rightarrow x$, then $T_{n} x_{n} \rightarrow T x$.
(b) Let X, Y be normed spaces and let $T: X \rightarrow Y$ be linear with the following property: for each sequence $\left\{x_{n}\right\}$ in X with $x_{n} \rightarrow 0$ the sequence $\left\{T x_{n}\right\}$ is bounded in Y. Show that T is bounded. [Hint: argue by contradiction.]
6. In this problem you can assume the validity of the following formula (stated in the May 2022 qualifying exam):

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f g d m=\int_{0}^{\infty}\left(\int_{\left\{x \in \mathbb{R}^{n}: f(x) \geq t\right\}} g(x) d m(x)\right) d t \tag{1}
\end{equation*}
$$

valid for measurable $f, g: \mathbb{R}^{n} \rightarrow[0, \infty)$.
Let $f \in L^{1}\left(\mathbb{R}^{n}, m\right)$ satisfy the following property:

$$
\begin{equation*}
\int_{A}|f| d m \leq \sqrt{m(A)}, \quad \text { for all } A \in \mathcal{L} \text { such that } m(A)<\infty . \tag{2}
\end{equation*}
$$

(a) Show that for every $t>0$, we have $m\left\{x \in \mathbb{R}^{n}:|f(x)| \geq t\right\} \leq t^{-2}$.
(b) Prove that if $1<p<2$, then f is in $L^{p}\left(\mathbb{R}^{n}, m\right)$.
(c) Provide an example of a function $f \in L^{1}(\mathbb{R}, m)$ satisfying (2) and that it is not in $L^{2}(\mathbb{R}, m)$.

