Analysis Qualifying Exam - August 2022

Work through all parts. Your work will be graded for correctness, completeness, and clarity.

Note: Below \mathcal{L} denotes the class of Lebesgue measurable sets in \mathbb{R}^n , m the Lebesgue measure on $(\mathbb{R}^n, \mathcal{L})$, |E| = m(E).

1. For f in $L^1_{loc}(\mathbb{R}^n)$ define the following versions of the Hardy-Littlewood maximal function:

$$M_1 f(x) = \sup_{r>0} \frac{1}{|B(x,r)|} \int_{B(x,r)} |f(y)| dm(y), \qquad M_2 f(x) = \sup_{B_x} \frac{1}{|B_x|} \int_{B_x} |f(y)| dm(y)$$

$$M_3 f(x) = \sup_{r>0} \frac{1}{|Q(x,r)|} \int_{Q(x,r)} |f(y)| dm(y)$$

where B(x,r) is the open ball with center x and radius r, Q(x,r) is the (closed) cube centered at x with edges parallel to the coordinate axes and with length 2r, and where B_x is any open ball containing x.

(a) Let n=2 and find explicit constants a,b,c,d>0 such that

$$aM_1f(x) \le M_3f(x) \le bM_1f(x), \qquad cM_1f(x) \le M_2f(x) \le dM_1f(x), \qquad \forall x \in \mathbb{R}^2.$$

(Note: this is also true in \mathbb{R}^n – when n=2 computations are slightly easier).

- (b) State the Hardy-Littlewood Theorem (about the maximal function) in \mathbb{R}^n , and explain why in \mathbb{R}^2 the theorem works for any of the above versions of the H-L maximal function (note: this is also true in \mathbb{R}^n).
- (c) Show that if $M_2f(x_0) > \alpha$ then there is $\delta > 0$ such that $M_2f(x) > \alpha$ when $|x x_0| < \delta$.
- 2. (a) Show that the space $B([0,\infty])=\{f:[0,\infty)\to\mathbb{C},\text{ bounded, measurable}\}$ is an inner product space under

$$(f,g) = \int_{[0,\infty)} \frac{f(x)\overline{g(x)}}{1+x^3} dm(x).$$

- (b) Show that the space $(B([0,\infty]),(\cdot,\cdot))$ is not a Hilbert space.
- (c) Let $\{e_j\}_1^{\infty}$ be an orthonormal basis of $L^2(\mathbb{R}^n)$, endowed with the natural inner product that makes it a Hilbert space (over \mathbb{C}). Show that if $e_{jk}(x,y) = e_j(x)e_k(y)$, for $x,y \in \mathbb{R}^n$ and $j,k \in \mathbb{N}$ then $\{e_{jk}\}_{j,k \in \mathbb{N}}$ is an orthonormal basis of the Hilbert space $L^2(\mathbb{R}^{2n})$ (with its natural inner product).
- 3. (a) Define the concept of bounded linear functional on a normed vector space $(X, \|\cdot\|)$. Define the dual X^* of the space X.
 - (b) State the Hahn-Banach Theorem on normed vector spaces.
 - (c) Let $\|\cdot\|_1$, $\|\cdot\|_2$ be two norms on X. Show that $\|(x,y)\| := \|x\|_1 + \|y\|_2$ $(x,y \in X)$, defines a norm on the vector space $X \times X$.
 - (d) In the notation of 3(c) above, suppose that f is a linear functional on X such that $|f(x)| \leq ||(x,x)||$ for all $x \in X$. Show that there exist f_1, f_2 linear functionals on X such that $f = f_1 + f_2$ and $|f_1(x)| \leq ||x||_1, |f_2(x)| \leq ||x||_2$, for all $x \in X$.

- 4. (a) Define what it means for a measure space (X, \mathcal{M}, μ) to be σ -finite.
 - (b) Show that if (X, \mathcal{M}, μ) is σ -finite and $E \in \mathcal{M}$ is so that $\mu(E) > 0$, then there is $F \in \mathcal{M}$ such that $F \subseteq E$ and $0 < \mu(F) < \infty$. With an example show that this conclusion may fail without the σ -finiteness hypothesis.
 - (c) Let (X, \mathcal{M}, μ) be a σ -finite measure space and let $f \in L^1(\mu)$, and real-valued. Define the set of real numbers

$$A_f := \left\{ \frac{1}{\mu(E)} \int_E f \, d\mu : E \in \mathcal{M}, \, 0 < \mu(E) < \infty \right\}.$$

Prove that if $A_f \subseteq [a, b]$, then $a \leq f(x) \leq b$ for almost every $x \in X$.

[Hint: argue by contradiction.]

- 5. (a) Let X, Y be normed spaces, let $T_n, T: X \to Y$ be bounded linear operators, and $x_n, x \in X$. Show that if $T_n \to T$ (in the operator norm topology) and $x_n \to x$, then $T_n x_n \to T x$.
 - (b) Let X, Y be normed spaces and let $T: X \to Y$ be linear with the following property: for each sequence $\{x_n\}$ in X with $x_n \to 0$ the sequence $\{Tx_n\}$ is bounded in Y. Show that T is bounded. [Hint: argue by contradiction.]
- 6. In this problem you can assume the validity of the following formula (stated in the May 2022 qualifying exam):

$$\int_{\mathbb{R}^n} f g \, dm = \int_0^\infty \left(\int_{\{x \in \mathbb{R}^n : f(x) \ge t\}} g(x) dm(x) \right) dt \tag{1}$$

valid for measurable $f, g : \mathbb{R}^n \to [0, \infty)$.

Let $f \in L^1(\mathbb{R}^n, m)$ satisfy the following property:

$$\int_{A} |f| \, dm \le \sqrt{m(A)}, \quad \text{for all } A \in \mathcal{L} \text{ such that } m(A) < \infty.$$
 (2)

- (a) Show that for every t > 0, we have $m\{x \in \mathbb{R}^n : |f(x)| \ge t\} \le t^{-2}$.
- (b) Prove that if 1 , then <math>f is in $L^p(\mathbb{R}^n, m)$.
- (c) Provide an example of a function $f \in L^1(\mathbb{R}, m)$ satisfying (2) and that it is not in $L^2(\mathbb{R}, m)$.