Qualifying Examination in Analysis May 2023

- If you have any difficulty with the wording of the following problems please contact the supervisor immediately.
- You are allowed to rely on a previous part of a multi-part problem even if you do not work out the previous part.
- Solve all problems.
- 1. Let μ be a measure on a measure space (X, \mathcal{S}) and let $\{E_j\}_1^{\infty} \subseteq \mathcal{S}$, be so that $\mu(E_j \cap E_k) = 0$ for all $j \neq k$. Let $N = \bigcup_{j,k} E_j \cap E_k$.
 - (a) Prove that $\mu(E) = \mu(E \setminus N)$.
 - (b) Show that the sets $\{E_j \setminus N\}$ are disjoint.
 - (c) Prove that $\mu(E) = \sum_{1}^{\infty} \mu(E_j)$.
- 2. Let (X, \mathcal{S}, μ) be a σ -finite measure space. Suppose that $L^2(X)$ is a subset of $L^1(X)$.
 - (a) Show that there is a constant C such that for all f in $L^2(X)$ we have $||f||_1 \le C||f||_2$. [Hint: use the closed graph theorem.]
 - (b) Show that $\mu(X) < \infty$.
 - (c) Prove that $L^p(X)$ embeds continuously in $L^q(X)$, if $1 \le q .$
- 3. (a) Show that for every $f \in L^1(\mathbb{R})$ and any $\epsilon > 0$ we have

$$\lim_{n \to \infty} n^{-\epsilon} f(nx) = 0$$

for almost all $x \in \mathbb{R}$. [Hint: Consider a series.]

(b) Construct a function $f \in L^1(\mathbb{R})$ such that f is unbounded on a set of positive measure inside $[N, \infty)$, for any $N \in \mathbb{N}$.

4. On $[0, \infty)$ consider the sequence of functions

$$f_n(x) = \frac{1 - |\cos x|^n}{(1 + \frac{x}{n})^2} - \frac{1 - \cos\left(\sqrt{\frac{x}{n}}\right)}{x^{3/2}}$$

Show that $||f_n||_1 < \infty$ for all n = 1, 2, ..., then show that

$$\lim_{n \to \infty} \int_0^\infty f_n(x) \, dx = +\infty.$$

- 5. Let X be an infinite dimensional normed space and let $B_X := \{x \in X : \|x\| \le 1\}$ be the closed unit ball of X.
 - (a) Let F be a finite dimensional subspace of X and let $w \in X \setminus F$. Pick $z \in F$ such that $0 < \|w - z\| < \frac{3}{2}\operatorname{dist}(w, F)$ and define $x := \frac{w-z}{\|w-z\|}$. Prove that

$$\operatorname{dist}(x,F) > \frac{2}{3}.$$

- (b) Starting with $x_1 \in X$ with $||x_1|| = 1$ and $F_1 = \{0\}$ find inductively points x_n in X with $||x_n|| = 1$ and finite-dimensional subspaces $F_n = \operatorname{span}(x_1, \dots, x_{n-1})$ of X related as in part (a). Prove that $\frac{3}{4}x_n + \frac{1}{4}B_X$, $n = 1, 2, \dots$ are mutually disjoint sets.
- (c) Show that there is no positive measure μ on a σ -algebra that contains the open balls of X with the following properties:
 - i. μ is translation invariant, i.e., $\mu(x+A) = \mu(A)$ for all $x \in X$ and any measurable set $A \subset X$.
 - ii. $0 < \mu(B) < \infty$ for any open ball B in X.
- 6. Let $E = \{x = (x_n)_{n=1}^{\infty} \mid x_{2k} = 0, k = 1, 2, \ldots\}$. Prove the following:
 - (a) E is closed linear subspace of ℓ^2 and of ℓ^1 .
 - (b) For every bounded linear functional $f: E \to \mathbb{R}$ and any $\epsilon > 0$ construct infinitely many linear extensions $F: \ell^1 \to \mathbb{R}$ of f with norm $||F|| \le (1+\epsilon)||f||$.
 - (c) Every bounded linear functional $g: E \to \mathbb{R}$ has unique extension $G: \ell^2 \to \mathbb{R}$ with the same norm. [Hint: Use a version of the Riesz representation theorem.]

- 7. Either find an example or disprove each of the following statements:
 - (a) There is a Lebesgue measurable subset A of $[0,1] \times [0,1]$ such that $|\{z \in [0,1] : (x,z) \in A\}| = x$ and $|\{z \in [0,1] : (z,y) \in A\}| = 1-y$ for all x and y in [0,1].
 - (b) There is a Lebesgue measurable subset B of $[0,1] \times [0,1]$ such that $|\{z \in [0,1]: (x,z) \in B\}| = x^2$ and $|\{z \in [0,1]: (z,y) \in B\}| = 1-y^2$ for all x and y in [0,1].
- 8. Consider the complex measure

$$\nu(A) = \int_A e^{ix - |x|} dx$$

defined on Lebesgue measurable subsets A of \mathbb{R} .

- (a) What is the variation measure $|\nu|$ and the total variation $||\nu||$?
- (b) Prove that if A has positive Lebesgue measure, then for any F_1, \ldots, F_N disjoint measurable subsets of A we have

$$\sum_{k=1}^{N} |\nu(F_k)| < |\nu|(A).$$