Qualifying Examination in Analysis August 2023

- If you have any difficulty with the wording of the following problems please contact the supervisor immediately.
- You are allowed to rely on a previous part of a multi-part problem even if you do not work out the previous part.
- Solve all problems.

1. Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be defined as

$$
h(x)=\left\{\begin{array}{ll}
0 & \text { if } x \in \mathbb{Q} \\
x & \text { if } x \notin \mathbb{Q}
\end{array} .\right.
$$

(a) Explain why h is Borel measurable.
(b) Let $g(x)=\sqrt{\log \frac{1}{x}}$, for $x \in(0,1 / 2]$. Show that $e^{g-n h} \in L^{1}((0,1 / 2])$, for all $n \in \mathbb{N}$.
(c) Show that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1 / 2} e^{g(x)-n h(x)} d x=0 .
$$

2. (a) Define $\|f\|_{\infty}$ for a Borel measurable function $f:[0,1] \rightarrow \mathbb{R}$. Define $L^{\infty}([0,1])$.
(b) Let $g \in L^{1}([0,1])$ with $\|g\|_{1}>0$. Show that if $f \in L^{\infty}([0,1])$ is such that $\|f\|_{\infty}>0$ and $\left|\left\{x \in[0,1]:|f(x)|=\|f\|_{\infty}\right\}\right|=0$ then $f g \in L^{1}([0,1])$ and

$$
\int_{0}^{1} f(t) g(t) d t<\|g\|_{1}\|f\|_{\infty} .
$$

(c) For each Lebesgue measurable set $E \subseteq[0,1]$ such that $|E|>0$ find $g \in L^{1}([0,1]), f \in L^{\infty}([0,1])$ such that $\|g\|_{1}>0,\|f\|_{\infty}>0$, $|f|=\|f\|_{\infty}$ on E, and $\int_{0}^{1} f(t) g(t) d t=\|g\|_{1}\|f\|_{\infty}$.
3. (a) State Fatou's lemma.
(b) Let $f_{n, m}$ and $f_{m}(n, m=1,2, \ldots)$ be complex-valued measurable functions on a measure space (X, μ) such that for all $x \in X$ and each m we have $\lim _{n \rightarrow \infty} f_{n, m}(x)=f_{m}(x)$. Suppose that for every $n=1,2, \ldots$ we have

$$
\int_{X} \sup _{m}\left|f_{n, m}(x)\right| d \mu(x) \leq 2+(-1)^{n}
$$

Prove that

$$
\int_{X} \sup _{m}\left|f_{m}(x)\right| d \mu(x) \leq 1
$$

(c) Under the assumption of part (b) show that there is a set E of measure zero such that for all $x \in X \backslash E$ and all $n=1,2, \ldots$ we have

$$
\sup _{m}\left|f_{n, m}(x)\right|+\sup _{m}\left|f_{m}(x)\right|<\infty .
$$

4. Let $g:[0, \infty) \rightarrow \mathbb{R}$ be a Lebesgue measurable function such that

$$
|g(t)| \leq \frac{t^{a}}{t+1}, \quad \forall t \geq 0
$$

for some $a \in(0,1)$. Define $G(x, t)=e^{-x t} g(t)$ on $[0, \infty)^{2}$. Show that G is integrable on $[0, \infty)^{2}$.
5. On \mathbb{R} consider the positive measures

$$
\mu_{1}(A)=\int_{A} \frac{d x}{1+x^{2}}, \quad \mu_{2}(A)=\int_{A} \frac{d x}{1+x^{4}}, \quad \mu_{3}(A)=|A|+\delta_{0}(A)
$$

where $|A|$ is the Lebesgue measure of A and δ_{0} Dirac mass at $\{0\}$.
(a) For each of the following assertions establish whether or not the assertion is true, justifying your answer:

$$
\mu_{1} \ll \mu_{2}, \mu_{2} \ll \mu_{1}, \mu_{1} \ll \mu_{3}, \mu_{3} \ll \mu_{1}, \mu_{2} \ll \mu_{3}, \mu_{3} \ll \mu_{2}
$$

(b) Compute the Radon-Nikodym derivative in the cases where absolute continuity holds.
6. Let H be a Hilbert space over \mathbb{R} and let $T: H \rightarrow H$ be a linear map such that $\langle T x, x\rangle \geq 0$ for all $x \in H$. Prove the following:
(a) For all $u, v \in H$ we have

$$
|\langle T u, v\rangle+\langle u, T v\rangle|^{2} \leq 4\langle T u, u\rangle\langle T v, v\rangle .
$$

[Hint: Try $x=u+\lambda v$.
(b) T is a bounded linear operator from H to H. [Hint: Use part (a) for an arbitrary $v \in H$ and the Closed Graph Theorem.]
7. (a) State the Uniform Boundedness Principle.
(b) Let $\left\{x_{n}\right\}$ be a sequence of vectors in a normed space X. Let X^{\prime} be the space of all bounded linear functionals on X. Assume that for any $f \in X^{\prime}$ we have

$$
\sum_{n=1}^{\infty}\left|f\left(x_{n}\right)\right|<\infty
$$

Prove that there exists a constant $K>0$ with the property

$$
\sum_{n=1}^{\infty}\left|f\left(x_{n}\right)\right| \leq K\|f\|
$$

for all $f \in X^{\prime}$.
[Hint: Consider the bounded linear operators $T_{n}: X^{\prime} \rightarrow \ell^{1}$ defined by

$$
\left.T_{n}(f)=\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right), 0,0 \ldots\right), \quad f \in X^{\prime} .\right]
$$

