Instructions: Do all 8 problems. Use a separate sheet for each problem.

1. Let
 \[f(x, y) = \begin{cases}
 x^{-4} & \text{if } y \leq x^2, \ x \neq 0 \\
 -y^{-2} & \text{if } y > x^2 \\
 0 & \text{if } x = 0.
 \end{cases} \]

 Apply Tonelli’s Theorem to prove that \(f \) is not integrable on \(A = [0, \infty)^2 \), but it is integrable on \(B = [0, \infty) \times [1, \infty) \). Apply Fubini’s Theorem to compute the integral
 \[\int \int_B f(x, y) dx dy. \]

2. State the dominated convergence theorem. Let
 \[f_n(x) = \frac{\sin(nx^{1/3})}{x(n + x^{1/3})}, \quad x > 0 \]
 Show that \(f_n \in L^1([0, \infty)) \) and that
 \[\lim_{n \to +\infty} \int_0^\infty f_n(x) dx = 0. \]

3. Let \(A \) be a measurable subset of \([0, 1]\) of positive measure. Show that there exist \(x_1, x_2 \in A \) with \(x_1 \neq x_2 \) such that \(x_1 - x_2 \) is a rational number.

4. Let \(f \) be a measurable function on a measure space \((X, \mu)\).
 (a) Prove that if \(f \) is integrable then the series
 \[\sum_{n=1}^\infty \mu(\{x \in X : |f(x)| > n^2 \}) \]
 converges. Provide an example to show that the converse implication is false.
 (b) Show that if \(\mu(X) < \infty \) and
 \[\sum_{n=1}^\infty n^2 \mu(\{x \in X : |f(x)| > n^2 \}) \]
 converges, then \(f \) must be integrable over \(X \).
5. Let T be a linear operator from a Hilbert space V (over \mathbb{C}) to V that satisfies
\[\|f\| = \frac{1}{5} \|T(f)\| \]
for all $f \in V$. Prove that for all $f, g \in V$ we have
\[\langle T(f), T(g) \rangle = 25 \langle f, g \rangle. \]

6. Consider the space $C[-1,1]$ of continuous functions on $[-1,1]$, equipped with the L^1 norm with respect to the Lebesgue measure, and the linear functional $T_0 : C[-1,1] \to \mathbb{R}$ defined by
\[T_0(f) = \int_{-1}^{1} |t| f(t) dt. \]
(a) Show that T_0 is bounded, and compute $\|T_0\|$.
(b) Let $f_0 = \chi_{[0,1]}$ and consider the operator $T : C[-1,1] + \mathbb{R}f_0 \to \mathbb{R}$ defined as
\[T(f + \lambda f_0) = \int_{-1}^{1} |t| f(t) dt + \lambda, \quad f \in C[-1,1], \lambda \in \mathbb{R}. \]
(i) Show that T is a linear functional that extends T_0.
(ii) Show that T is unbounded on $C[-1,1] + \mathbb{R}f_0$, equipped with the L^1 norm.

7. Let $g(t)$ be a nonnegative measurable function on the real line. Show that
\[\left(\int_{1}^{\infty} g(t) dt \right)^2 \leq 3 \int_{1}^{\infty} t^{4/3} g(t)^2 dt. \]
Assuming that the right-hand side is finite, find all functions g for which equality holds in the preceding inequality.

8. Let f be a complex-valued measurable function on a measure space (X, μ) that satisfies:
\[\int_{|f|<n} \frac{|f|^2}{\frac{1}{n} + |f|} d\mu \leq 1 \]
for all $n = 1, 2, \ldots$. Find the limit of
\[\int_{|f|\geq n} \frac{|f|^2}{\frac{1}{n} + |f|} d\mu \]
as $n \to \infty$.